Integrating Semantic Memory in Soar

Yongjia Wang John E. Laird

Outline

- Background & Motivation
- Implementations and Experiments

What is Semantic Memory

• Definition

- 'Your memory for meanings and general (impersonal) facts.'
 [from WordNet]
- Episodic memory and Semantic memory distinction
 - Episodic memory
 - Tied to a specific learning episode or experience
 - What you remember
 - Semantic memory
 - General knowledge not tied to a learning experience
 - What you know

Memory Systems

Related Fields and Motivation

Architectures	Focus	Feature	Limitations
Cognitive Psychology (ACT-R)	To model human behavior	Long-term declarative memory and learning	Haven't been used to build functional agents
AI Agent Architectures (Soar)	To build intelligent agents	Efficient domain knowledge engineering	No long-term semantic memory, limited learning
Knowledge Representation Systems (CYC)	To represent common sense semantic knowledge	Declarative knowledge representation	Representational model, not learning model
Our Approach (Soar + semantic memory)	To build intelligent agents	Efficient domain knowledge engineering and more learning capabilities	Constrained by Soar 5

Research Goals

- To improve general functionality of Soar by semantic memory
 - Explore new cognitive capabilities
 - Characterize computational functionalities
- To understand semantic memory in the context of a general cognitive architecture
 - How to use semantic memory in specific tasks?
 - How semantic memory interacts with other mechanisms in Soar?
 - What are the computational implications of semantic memory and episodic memory distinction?

Distinction Between Semantic Memory and Episodic Memory in Soar

	Semantic Memory	Episodic Memory
Storage & retrieval unit	Single level objects in working memory (declarative chunks)	Entire working memory snapshot (episode)
Temporal information	No architectural temporal information	Architectural temporal information (ex: next episode)
Main purposes	Store general knowledge Category learning	Store specific events Case-based reasoning

Outline

- Background & Motivation
- Implementations and Experiments Task: Cognitive Arithmetic

Overview of Experiment

- Purpose:
 - Integrate a declarative semantic memory component
 - Demonstrate related functional advantage of declarative representation
- Implementation:
 - Semantic memory with declarative representation
 - Deliberate and automatic semantic learning
- Task: Cognitive arithmetic
 - Easy to understand
 - Universally performed
 - Multiple types of learning

0	9	5	2
+ 0	0	6	3
1	0	1	5

Working Memory Representation of an Arithmetic Problem

Problem Space

Solving One Column

Transfer Learning Effect from Semantic Learning

Counting once and learn 1 declarative chunk

Procedural Representation Cannot be Transferred

Comparison of Different learning Configurations

Decision Cycles Breakdown

Situations Decision Cycles	All computations	With arithmetic facts	After chunking
operators in top-state (initialization, process-column, next-column)	9	9	9
get-digits (from top-state)	3 × 3=9	9	0
write-result (to top-state)	3 × 1=3	3	0
retrieve	3 × 4=12	12	0
counting	39	0	0
Total	72	33	9

Summary

- Nuggets
 - Implemented a semantic memory with declarative representation
 - Demonstrated the functional advantage of declarative representation over procedural representation
 - Demonstrated transfer learning effect by semantic learning
 - Demonstrated the functional Interaction between semantic learning and chunking
- Coals
 - Cognitive arithmetic is an internal mental task
 - The task is completely deterministic

Thank You