
© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 1

Thinking…

…inside the box

Randolph M. Jones
Jacob A. Crossman
Christian Lebiere
Bradley J. Best

HLSR: Compiling to Soar

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 2

What is HLSR?
� High Level Symbolic
Representation

� A language for encoding
knowledge

� The language is:

� Architecture-neutral

� Domain-independent

� High-level

� Designed to support reuse

� Target users:

� Cognitive modelers

� End user tool developers

HLSR Knowledge

Compiler for
ACT-R

Architecture Code
(ACT-R)

Compiler for Soar

Architecture Code
(Soar)

HLSR
Libraries

ACT-R

Environment

P
ro

du
ct

io
ns

(B
as

al
 G

an
gl

ia
)

Retrieval Buffer
(VLPFC)

Matching (Striatum)

Selection (Pallidum)

Execution (Thalamus)

Goal Buffer
(DLPFC)

Visual Buffer
(Parie tal)

Manual Buffer
(Motor)

Manual Module
(Motor/Cerebellum)

Visual Module
(Occipital/etc)

Intentional Mod ule
(not identified)

Declarative Module
(Temporal/Hippocampus

)

Soar

Dev Tools
behavior template
 SetupAmbush(Me,TerrainReasoning,
 PlanningPolicy) {
using interface TerrainReasoning
 preferences {
intantiate PlanningPolicy

 }
application {
sequence {
abstract behavior ObtainPlan
behavior MoveIntoPosition(Me)

 }

User GUI

DeveloperEnd User

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 3

What HLSR Contributes
� Design at the representation level, hide
implementation details
� Free modeler from architecture-level details

� Emphasize understandability, maintainability,
and reuse

� Why an abstract language?
� Better tools are necessary but not sufficient

� Cognitive architectures are necessary but not
sufficient

� A language allows merging of different
architectural concepts while abstracting
low-level details

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 4

Common Mechanisms
Captured by HLSR

� Goals

� Declarative memory

� Structure and retrieval

� Timely reaction to external events

� Decision processes

� Goal selection

� Action selection

� HLSR creates higher-level constructs that map
onto different lower-level constructs in different
cognitive architectures

� Compiler should be able to translate HLSR to ACT-R or
Soar

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 5

Micro-Theories
� Description of structures, templates, and
execution strategies used to execute HLSR
constructs

� Architecture-specific

� Invisible to HLSR developer

� Micro-theories are modular

� One micro-theory for each HLSR construct

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 6

The HLSR Compiler

Runtime
Library

Parser

Code
Generator

End User
Develop-

ment ToolsMicrotheories

Intermediate
Represent-

ation

Architecture-
specific code

HLSR Source

Code
Templates

Microtheories

Code
Templates

Runtime
Library

HLSR
Grammar

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 7

Abstracting
Low-Level Details

� Process tagging

� Integrating knowledge from different
models

� Computing answers vs. retrieving stored
answers

� Iteration

� Copying

� Complex logic

� Representing sensory-motor interactions

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 8

HLSR Building Blocks
(Primitive Constructs)

� Relations

� Declarative memory, goals

� Form: production or rule

� Transforms

� Procedural knowledge

� Form: body of execution

� Activation Tables

� Pattern recognition for response selection

� Form: decision matrix

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 9

Relation
� A relationship between symbols in
declarative memory

� Defined by:
� Name

� Attributes

� Met condition (optional)

� Can be:
� A fact

� A goal

� A request to retrieve something from
declarative memory

relation Square
name is a string
size is a integer

relation SmallerThan
a is a Square
b is a Square
met condition

a.size < b.size

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 10

Transform
� A conditionally executed procedure

� Defined by:

� Name

� Trigger conditions

� Body (set of actions)

� Actions execute serially

� Multiple transforms may execute in parallel

� Failure to execute � transform suspended
and subgoal created

transform MoveSquareLeft
a is a square
consider if

goal is to change location
best place is to the left

body
pick up square
move left
put down square

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 11

Activation Table
� Specifies conditions and actions

� Like truth tables or production rules

� Defined by:

� Condition block

� Action block

Actions are labeled:

� T (true)

� F (false)

� * (don’t care)

activation table WeatherGear
conditions
1: It is raining
2: It is windy

TT Wear raincoat, no umbrella
TF Wear raincoat, bring umbrella
F* No raincoat, no umbrella

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 12

Compiling Relations to Soar

� Key Requirements

� Blend asserted facts with computed facts (retrieve v.
compute problem)

� Map to HLSR global memory pool (no state references)

� Retrieve one best (eliminate multiple retrievals)

� Constraints

� Partial matches can cause significant slow down

� Observation: compiler lacks some of the
semantic information humans use to do this
efficiently

� Cardinality constraints

� Data lifetime: how long data is valid

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 13

A Soar Microtheory for
Relations

Top State

Object Pool
Request

Pool

HLSR Transform

sp { ….

(^attr1 val2)

(^attr2 val2)

…}

Local State

(on transform)

Requests for

retrievals in

transform context
Propose

Retrieve One

Best Operator

Retrieve One

Best Operator

Single Instance

Selected

I-Supported

Retrieval

Productions

� Objects placed in pools
based on type

� Retrievals on demand

� Transform assert
requests in pool

� I-supported
productions assert
value based on met
condition

� Operator used to select
one best

� Directly asserted and
retrieved facts
represented in object
pool the same way

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 14

Compiling Goals to Soar
� Key Requirements

� Represent goal forest

� Auto-reconsideration via met condition

� Constraints

� Soar “state stack” can only represent single
thread of goals

� Observation: we have to decide how to
leverage goal stack

� Use FOG approach similar to “Radical Randy” OR

� Use FOG declarative representation but use
state stack to have single thread of active goals

Our Current Approach

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 15

A Soar Microtheory for Goals

� Goals pooled in similar
way to objects

� Extra layer for active state of
goal

� Active goal pool should be
small for performance

� “Met” condition
elaborations mark goal
achieved

� Operator used to move
goal to the “Latent” bin
after achievement

Top State

goals

Active

goal-

type

Con-

sidered
Latent

subgoals

tag:

achieved completed goals

mark

achieved

Met

Elab.

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 16

Compiling Transforms to Soar

� Key Requirements
� Hold consistent variable bindings

� Execute sequences including waitfor statements

� Provide an automatic subgoal mechanism for
transform failures

� Constraints
� Soar is inherently parallel

� Observation: with transforms the compiler
does most bookkeeping that developers
usually do
� Process tags and temporary variables

� Sequence tags and conditions

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 17

A Soar Microtheory for Goals
� Transform objects store
state and tags for
multiple operators
� Could be a Soar state

� Code generation
decomposes body to
retrieve/act pairs

� Each retrieve/act pair
executed sequentially
with tags used to control
sequence

� Waitfors using i-support
� Impasses generated
when no operator (i.e.
state no change)

Top State

transforms

Active

transform-

type

Con-

sidered
Latent

mark

suspended

Transform

Body

Local Vars

Trans State

executing

impassed

suspended

completed

Body
Request

(i-support)

Harvest

(operator)

Action

(operator)

Retrieve

Act

Retrieve

Act

Ret/Act Impasse

Operators

(if no action)

Wait-

for

Impasse-

Resolved

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 18

Compiling ACT-R
� Challenges

� ACT-R much more sequential: few, narrowly defined
points of parallelism

� ACT-R has no support for predicate logic

� ACT-R can be non-deterministic: what is the acceptable
number of times it should get the “right? answer?

� ACT-R microtheories

� Map complex retrievals to low level retrieval sequences

� Leverage the goal (or context) buffer to represent
processing state for all HLSR constructs

� Provide less parallelism: generally the ACT-R program
has to decide explicitly when to check conditions (e.g.
met conditions, activation table conditions, etc)

© 2004 Soar Technology, Inc. ���� June 7, 2006 ���� Slide 19

Conclusions
� Status of the HLSR project

� Initial implementation nearly complete

� Evaluation on the way

� Building abstractions and micro-theories has revealed
interesting and subtle differences between architectures

� HLSR will:

� Abstract away from details of a particular cognitive
architecture

� Encapsulate knowledge and behaviors

� Improve efficiency of creating new models

� Allow easier comparisons of models and architectures

� Make cognitive modeling more accessible

