Thinking...

...Inside the box

HLSR: Compiling to Soar

Randolph M. Jones
Jacob A. Crossman
Christian Lebiere
Bradley J. Best

< Soar Technolog

Thinking inside the box Micro Analysis & Design

© 2004 Soar Technology, Inc. ¢ June 7, 2006 * Slide 1 _Ki sggﬂs.’[i!lﬂ.ﬂlgﬂv

What is HLSR?

= High Level Symbolic
Representation

= A language for encoding
knowledge

® The language is:

e Architecture-neutral

e Domain-independent

e High-level

e Designed to support reuse
" Target users:

e Cognitive modelers

e End user tool developers

End%ser

BLL
CT-R
g:*:g

L eviomen |

Developer

Dev Tools

Architecture Code
(Soar)

© 2004 Soar Technology, Inc. ¢ June 7, 2006 ¢ Slide 2

A2 Spar Tty

What HLSR Contributes

= Design at the representation level, hide
implementation details

e Free modeler from architecture-level details

e Emphasize understandability, maintainability,
and reuse

® \Why an abstract language?
e Better tools are necessary but not sufficient

e Cognitive architectures are necessary but not
sufficient

= A language allows merging of different
architectural concepts while abstracting
low-level details

© 2004 Soar Technology, Inc. ¢ June 7, 2006 * Slide 3 KS Sggﬂrmlgdg[lﬁnb[guv

Common Mechanisms
Captured by HLSR

Goals

Declarative memory
e Structure and retrieval

Timely reaction to external events

Decision processes
e Goal selection
e Action selection

HLSR creates higher-level constructs that map
onto different lower-level constructs in different
cognitive architectures

e Compiler should be able to translate HLSR to ACT-R or
Soar

© 2004 Soar Technology, Inc. ¢ June 7, 2006 * Slide 4 _Ki sggﬂs.’[i!lﬂ.ﬂlgﬂv

Micro-Theories

m Description of structures, templates, and
execution strategies used to execute HLSR
constructs

e Architecture-specific
e Invisible to HLSR developer

m Micro-theories are modular
¢ One micro-theory for each HLSR construct

© 2004 Soar Technology, Inc. ¢ June 7, 2006 * Slide 5 KS Sggﬂrmlgdg[lﬁnb[guv

The HLSR Compiler

e

/

/

| HLSR Source

\\

/ HLSR !
 Grammar /

/" Intermediate SRV

Microtheories <\ RERIESEs Dievlels-

R, . ation / ment Tools
L’/ C (0] d e \‘\
\Templates /

Code
Generator

(’/ Runtime
\ Library)]

< Architecture-
specific code)

© 2004 Soar Technology, Inc. ¢ June 7, 2006 * Slide 6 K{‘ Sgar Tﬂﬂhﬂﬂlﬂﬂv

inking Inside the box.

Abstracting
Low-Level Detalls

®m Process tagging

®m Integrating knowledge from different
models

m Computing answers vs. retrieving stored

answers
m [teration
m Copying
m Complex logic
m Representing sensory-motor interactions

© 2004 Soar Technology, Inc. ¢ June 7, 2006 * Slide 7 _Ki sggﬂs.’[i!lﬂ.ﬂlgﬂv

HLSR Building Blocks
(Primitive Constructs)

= Relations
e Declarative memory, goals
e Form: production or rule
®» Transforms
e Procedural knowledge
e Form: body of execution
= Activation Tables
e Pattern recognition for response selection
e Form: decision matrix

© 2004 Soar Technology, Inc. ¢ June 7, 2006 « Slide 8 KS Sggﬂrmlgdg[lﬁnb[guv

Relation

m A relationship between symbols in
declarative memory

N Deﬂ ned by - relation Square

name is a string

e Name size is a integer
o Attributes relation SmallerThan

ais a Square

e Met condition (optional) b is a Square

met condition

m Can be: a.size < b.size
e A fact
e A goal
e A request to retrieve something from
declarative memory

© 2004 Soar Technology, Inc. ¢ June 7, 2006 * Slide 9 KS Sggﬂrmlgdg[lﬁnb[guv

Transform

®m A conditionally executed procedure
Deflned by: transform MoveSquareLeft

ais a square

~ consider if
N dame goal is to change location

e Trigger conditions body T o the eH

e Body (set of actions) pick up square

move left

Actions execute serially [

Multiple transforms may execute in parallel

Failure to execute = transform suspended
and subgoal created

© 2004 Soar Technology, Inc. ¢ June 7, 2006 ¢ Slide 10

A2 Spar Tty

Activation Table

m Specifies conditions and actions
e |ike truth tables or production rules

®m Defined by:

® CO N d |t| on b I OC k activation table WeatherGear

conditions

e Action block 1: It is raining

] 2: 1t is wind
Actions are labeled: S Wingy

¢ TT Wear raincoat, no umbrella
T (true) TF Wear raincoat, bring umbrella
¢ F (false) F* No raincoat, no umbrella

¢ * (don't care)

© 2004 Soar Technology, Inc. ¢ June 7, 2006 + Slide 11 _Ki sggﬂs.’[i!lﬂ.ﬂlgﬂv

Compiling Relations to Soar

= Key Requirements

e Blend asserted facts with computed facts (retrieve v.
compute problem)

e Map to HLSR global memory pool (no state references)
e Retrieve one best (eliminate multiple retrievals)

= Constraints
e Partial matches can cause significant slow down

= Observation: compiler lacks some of the
semantic information humans use to do this
efficiently

e Cardinality constraints
e Data lifetime: how long data is valid

© 2004 Soar Technology, Inc. ¢ June 7, 2006 + Slide 12 _Ki sggﬂs.’[i!lﬂ.ﬂlgﬂv

A Soar Microtheory for

Relations

s Objects placed in pools
based on type

Retrievals on demand

e Transform assert
requests in pool

I-supported
productions assert
value based on met
condition

Operator used to select
one best

Directly asserted and
retrieved facts
represented in object
pool the same way

© 2004 Soar Technology, Inc. ¢ June 7, 2006 ¢ Slide 13

Object Pool

Top State

Retrieval
Productions

. Propose
| Retrieve One
Best Operator

Retrieve One
Best Operator

Single Instance
Selected

Request
Pool

T

Requests for

retrievals in
transform context

HLSR Transform

sp{....

(@ Aattr1 val2)
(@ "attr2 val2)
2}

@ 0 O

Local State
(on transform)

A2 Spar Tty

Compiling Goals to Soar

= Key Requirements

e Represent goal forest

e Auto-reconsideration via met condition
= Constraints

e Soar “state stack” can only represent single
thread of goals

= Observation: we have to decide how to
Ieverage goal stack Our Current Approach
e Use FOG approach similar to "Radical Randy” OR i
e Use FOG declarative representation but use

state stack to have single thread of active goals

© 2004 Soar Technology, Inc. ¢ June 7, 2006 * Slide 14 _Ki sggﬂs.’[i!lﬂ.ﬂlgﬂv

A Soar Microtheory for Goals

s Goals pooled in similar Top State
way to objects

e Extra layer for active state of
goal

e Active goal pool should be
small for performance

m "Met” condition PN
1 , Con-

elaborations mark goal (Act've> <sidered/> <Latent>
achieved —

Operator used to move | \E.‘:E

goal to the "Latent” bin C?iiiked completed gosis

after achievement
/ \ subgoals / \

© 2004 Soar Technology, Inc. ¢ June 7, 2006 * Slide 15 KS SEQLTE.EDH.“.,!BW

Compiling Transforms to Soar

= Key Requirements
e Hold consistent variable bindings
e Execute sequences including waitfor statements

e Provide an automatic subgoal mechanism for
transform failures

= Constraints
e Soar is inherently parallel

x Observation: with transforms the compiler
does most bookkeeping that developers
usually do
e Process tags and temporary variables
e Sequence tags and conditions

© 2004 Soar Technology, Inc. + June 7, 2006 * Slide 16 K{‘ S%ﬂsﬂ@ﬂplguv

A Soar Microtheory for Goals

Transform objects store
state and tags for | transforms
multiple operators = A

()
e Could be a Soar state transform- ./

Code generation R
decomposes body to
retrieve/act pairs e) o) [e)
Each retrieve/act pair

executed sequentially 1 |
with tags used to control .
sequence E |

Trans State “{operator) /

Waitfors using i-support iy - oo | N

¢ suspended _(operator) /

Impasses generated e

(if no-action)

when no operator (i.e. R e
Sta te NO C h an g e) N et/Act P b 4

Operators

Top Etate

: / \

© 2004 Soar Technology, Inc. ¢ June 7, 2006 * Slide 17 K{‘ SEQLTE.EDH.“.,!BW

Compiling ACT-R

= Challenges

e ACT-R much more sequential: few, narrowly defined
points of parallelism

e ACT-R has no support for predicate logic
e ACT-R can be non-deterministic: what is the acceptable
number of times it should get the “right? answer?
m ACT-R microtheories
e Map complex retrievals to low level retrieval sequences

e | everage the goal (or context) buffer to represent
processing state for all HLSR constructs

e Provide less parallelism: generally the ACT-R program
has to decide explicitly when to check conditions (e.g.
met conditions, activation table conditions, etc)

© 2004 Soar Technology, Inc. + June 7, 2006 * Slide 18 K’S S%ﬂsﬂ@ﬂplguv

Conclusions
m Status of the HLSR project

e [nitial implementation nearly complete
e Evaluation on the way

e Building abstractions and micro-theories has revealed
interesting and subtle differences between architectures

m HLSR will:

Abstract away from details of a particular cognitive
architecture

Encapsulate knowledge and behaviors

Improve efficiency of creating new models

Allow easier comparisons of models and architectures
Make cognitive modeling more accessible

© 2004 Soar Technology, Inc. + June 7, 2006 * Slide 19 K’S S%ﬂsﬂ@ﬂplguv

