Cognitive Constraint Modeling: An Alternative to Traditional Architectures

Andrew Howes¹ Richard Lewis² Alonso Vera³

<ロト<部ト<差ト<差ト 1/60

¹School of Informatics University of Manchester

²Department of Psychology University of Michigan

³HCI Group NASA Ames and Carnegie Mellon

May 25, 2006

Outline

- Overview of Constraint Analysis
- 2 Example #1: Simple Dual-tasks
- 3 How Cognitive Constraint Modeling Works
- 4 Example #2: Boeing 777/FDF Cockpit Tasks

5 Example #3: A Critique of a Prominent ACT-R Model

Key Claims

Outline

- Overview of Constraint Analysis
- Example #1 Dual-tasks
- How It Works
- Example #2: 777 Cockpit
- Example #3 ACT-R Critique

Summary

- Human Task Performance can be predicted by formally reasoning about the implications of a theory rather than running a simulation.
- A theory of cognitive architecture explains empirically observed asymptotic bounds on performance if there is substantial correspondence between the asymptote and the optimal performance implied by the theory.
- The ability to automatically derive optimal predictions from cognitive theory has significant theoretical and applied benefits.

<ロト<部ト<差ト<差ト 3/60

How Architectures Make Predictions

Outline

Overview c Constraint Analysis

Example #: Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3 ACT-R Critique

Summary

ARCHITECTURE + KNOWLEDGE (STRATEGY) = BEHAVIOR

<ロ > < 団 > < 直 > < 直 > < 亘 > 三 2000 4/60

A Conundrum for Cognitive Theory

Outline

Overview of Constraint Analysis

Example #1 Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

Complete cognitive theories must take the form architectures that admit of arbitrary knowledge/strategic variation

BUT: knowledge, strategy can become theoretical degrees of freedom in modeling data

- Explanation may reside primarily in strategy, not architecture
- Strategy may have been selected to fit the data at hand

A Conundrum for Cognitive Theory

Outline

Overview of Constraint Analysis

Example #1 Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

Complete cognitive theories must take the form architectures that admit of arbitrary knowledge/strategic variation

BUT: knowledge, strategy can become theoretical degrees of freedom in modeling data

- Explanation may reside primarily in strategy, not architecture
- Strategy may have been selected to fit the data at hand

• (But that never happens, right?)

Two Possible Solutions

Outline

- Overview o Constraint Analysis
- Example #1 Dual-tasks
- How It Works
- Example #2 777 Cockpit
- Example #3 ACT-R Critique
- Summary

• Focus on "immediate behavior" (Newell 1990)

- Behavior < 1 s
- Problem: Even < 1 s behavior shows surprising amount of strategic modulation (Meyer & Kieras, 1997)

Theory of learning/instruction taking

• "Close the loop", so strategy not under theorist's control

• Problem: complexity; testing many aspects of theory simultaneously

Constraint Analysis Overview

Outline

- Overview of Constraint Analysis
- Example #1 Dual-tasks
- How It Works
- Example #2: 777 Cockpit
- Example #3 ACT-R Critique
- Summary

- Adaptive behavior is bounded by Objective + Environment + Knowledge + Architecture (Simon 1992)
- Constraint satisfaction techniques can be used to calculate the optimal behavior given a set of heterogeneous constraints plus an objective.
- In short, combining Formal Rational Analysis with Bounded Rationality

Constraint Analysis Overview

Overview of Constraint Analysis

Explaining the Bounds on Adaptation

Typical PRP (psychological refractory period) Experiment

Outline

Overview of Constraint Analysis

Example #1: Dual-tasks

- How It Works
- Example #2: 777 Cockpit
- Example #3 ACT-R Critique
- Summary

- Choice response to a tone (T1) and a pattern (T2).
- Give priority to the tone response.
- Tone presented first, pattern stimulus is presented after an SOA.

- According to Meyer and Kieras, elevated RT2 is because participants ensure T2 response is after T1 response
- They called this Strategic Response Deferment (SRD).

Simple Dual-Tasking PRP Study

<ロト < 団 > < 臣 > < 臣 > 三 22,60

Outline

Overview of Constraint Analysis

Example #1: Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3: ACT-R Critique

Summary

Ruthruff et al., 2003 report a PRP experiment with:

- Single participant.
- Unordered responses.

Simple Dual-Tasking PRP Study

Outline

Overview of Constraint Analysis

Example #1: Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

Ruthruff et al., 2003 report a PRP experiment with:

- Single participant.
- Unordered responses.

Now imagine if subject must produce **ordered** responses:

- At long SOAs no SRD is required to avoid response reversal.
- At short SOAs more than 50% response reversal when objective not sensitive to reversal.

A Very Simple Constraint Model

Outline

Overview of Constraint Analysis

Example #1: Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

- Constraints consist of the mean overall RTs and SDs.
- Space of strategies defined by a single variable: Extension of T2 response (E).
 - A simple form of Meyer and Kieras' SRD
- Objective is to minimize duration and response reversals.
 - Note the trade-off: Reduced reversals vs. total duration.

<ロト<団ト<臣ト<臣ト 14/60

Combining Task + Architecture to Compute Optimal Behavior

- Outline
- Overview of Constraint Analysis
- Example #1: Dual-tasks
- How It Works
- Example #2: 777 Cockpit
- Example #3 ACT-R Critique
- Summary

- Now we can compute cost function from Monte-carlo simulations given this subject's standard deviation of RTs.
- Note that this combines two features:
 - Constraints on the TASK (ordering and speed constraints, as expressed through explicit payoff).
 - Constraints on the ARCHITECTURE (noise in the performance system).

Simple Ordered Responses

Outline

Overview o Constraint Analysis

Example #1: Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

New experiments (Kopecky):

- Visual cue appears.
- Subject must quickly press two keys in order:
 - Left index, right middle.
 - Left middle, left index.
 - Right ring, left middle.
 - etc.
- Subject rewarded for speed and accuracy.

SIMPLE MODEL

 Subjects defer R2 for IRI milliseconds after R1, where IRI maximizes payoff given their indiosyncractic variance.

<ロト<部ト<差ト<差ト 16/60

Explicit Payoff Schemes

Outline

Overview o Constraint Analysis

Example #1: Dual-tasks

How It Works

Example #2 777 Cockpit

Example # ACT-R Critique

Summary

Subjects were rewarded with CASH with explicit payoff schemes. Example:

- If correct and Total RT < 500ms, then award 100 - RT/5 points.
- If correct and Total RT
 >= 500ms, then award zero points.
- If incorrect, then lose 100 points.

Sample Payoff Curves at 4 Different Standard Deviations (SD) of IRI

Outline

Overview o Constraint Analysis

Example #1: Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3 ACT-R Critique

Summary

Sample Payoff Curves at 4 Different Standard Deviations (SD) of IRI

Predicted optimal IRI as function of SD of IRI

Outline

Overview o Constraint Analysis

Example #1: Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3 ACT-R Critique

Summary

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

= 20/

A Good Subject

Overview o Constraint Analysis

Example #1: Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3 ACT-R Critique

Summary

イロン 不聞 とくほど 不良とう ほ

21/

Another Good Subject

Overview o Constraint Analysis

Example #1: Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3 ACT-R Critique

Summary

A So-So Subject

Overview o Constraint Analysis

Example #1: Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3 ACT-R Critique

Summary

All Subjects, all Finger-Pairs: Actual vs. Predicted Optimal Points

All Subjects, all Finger-Pairs: Actual vs. Predicted Optimal Points

<ロ > < 部 > < 書 > < 書 > = 25 / 60

Outline

Overview o Constraint Analysis

Example # Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3 ACT-R Critique

Summary

This was a simple task where the strategy space = single quantitative variable.

Analysis of more sophisticated strategies needs a more general solution...

<ロト<団ト<臣ト<臣ト<王、 26/60

Cognitive Constraint Modeling

Outline

Overview o Constraint Analysis

Example # Dual-tasks

How It Works

Example #2 777 Cockpit

Example # ACT-R Critique

Summary

<ロト<部ト<差ト<差ト 27/60

Cognitive Constraint Modeling

The tool is called CORE: Constraint-based Optimizing Reasoning Engine

Outline

Overview o Constraint Analysis

Example #3 Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3 ACT-R Critique

Summary

Constraints are logical relations between variables. They may specify partial values (e.g., duration, $D_i > 24$ ms), are non-directional (E.g. $S_i <= E_i + 300$ ms), and declarative.

Behavior Graphs

Outline

Overview o Constraint Analysis

Example #1 Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3 ACT-R Critique

Summary

- Boxes represent cascaded processes.
- Rows of processes represent resources (cognition, perceptual, motor) and world events.
- Time is represented from left to right.
- Horizontal position represents onset.
- Spatial extent represents duration.

Dual-task (PRP) with simple set of process & information-flow constraints (50ms SOA)

- Outline
- Overview o Constraint Analysis
- Example #1 Dual-tasks

How It Works

- Example #2 777 Cockpit
- Example #3 ACT-R Critique
- Summary

Outline

Constraint Analysis

Example # Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

But does the approach scale to more complex tasks?

<ロト<団ト<臣ト<臣ト 31/60

Comparing two cockpit designs

777

FDF

Outline

Overview of Constraint Analysis

Example #1 Dual-tasks

How It Work

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

Goals:

- New design should reduce errors
- New design should be no slower than old

- 1. Verify current vertical mode
- 2. Dial Altitude Selector down to 12,000
- 3. Hit Altitude Selector
- 4. Verify new altitude
- 5. Verify new vertical mode

- 1. Verify current vertical mode
- 2. Dial Altitude Selector down to 12,000
- 3. Hit Altitude Selector
- 4. Verify new altitude
- 5. Verify new vertical mode

- 1. Verify current vertical mode
- Dial Altitude Selector down to 12,000
- 3. Hit Altitude Selector
- 4. Verify new altitude
- 5. Verify new vertical mode

Ē	
	STANCH STANDARD (STANDARD) STANDARD (STANDARD) STANDARD (STANDARD) STANDARD (STANDARD)

FLIGHT	PLAN	LE62:	SPUERLAA
			4748
Densw			6899
003611			UEEO
UAK25		346	12788
04648			14988
MAGES	61.98		14288
0ER88	21 MI		
			33989
REVES		343	152223
OTRIC			17000
C 14			17000
		343	11669
PAULA			
			12988
MAKER	2 84		12988
SMD	36 84	248	8718
SAPPT		348	Sagan
	1 10		

- 1. Verify current vertical mode
- 2. Dial Altitude Selector down to 12,000
- 3. Hit Altitude Selector
- 4. Verify new altitude
- 5. Verify new vertical mode

- 1. Verify current vertical mode
- 2. Dial Altitude Selector down to 12,000
- 3. Hit Altitude Selector
- 4. Verify new altitude
- 5. Verify new vertical mode

- 1. Verify current vertical mode
- 2. Dial Altitude Selector down to 12,000
- 3. Hit Altitude Selector
- 4. Verify new altitude
- 5. Verify new vertical mode

The Demands of Applied Modeling

- Outline
- Overview of Constraint Analysis
- Example #1 Dual-tasks
- How It Works
- Example #2: 777 Cockpit
- Example #3 ACT-R Critique
- Summary

- Not just interested in *time*, but **memory load** and **ability to handle interruption**
- Tracking memory load requires specifying what must be held in memory and when
- Our task specification language and models capture this in the form of **information flow constraints**...

<ロト<団ト<臣ト<臣ト 39/60

A Natural Task Specification

Outline

Overview of Constraint Analysis

Example #1 Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

Captures the task's **information flow** rather than a fixed sequence of steps.

boeing FDF tt1

_>

 comprehend situation
 : FLIGHT_PLAN
 LAST_CLEARANCE,

 comprehend clearance
 : INSTRUCTION
 ALTITUDE,

 get vertical_mode after
 INSTRUCTION ALTITUDE
 : VMODE,

 set altitude to ALTITUDE given INSTRUCTION VMODE
 : DIALED PUSHED,

 check limit against ALTITUDE after DIALED PUSHED
 : LMT_CHECKED,

 check ag_status against INSTRUCTION after LMT_CHECKED : AP_CHECKED.

<ロ > < 部 > < 書 > < 書 > 三 · ののの 40/60

Emergent Strategies

- Outline
- Overview of Constraint Analysis
- Example #3 Dual-tasks
- How It Works
- Example #2: 777 Cockpit
- Example #3 ACT-R Critique
- Summary

- Fully specified task constraints may still leave many details of behavior unspecified
- These details are automatically worked out by CORE to satisfy the architectural constraints
- *Example:* Precise timing of the perception of the mode information

<ロ > < 部 > < 言 > < 言 > 三 の Q @ 41/60

Emergent Strategies

Outline

Overview of Constraint Analysis

Example #1 Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

Early look to the mode display, in series with the rest of the task:

Emergent Strategies

Outline

Overview of Constraint Analysis

Example #1 Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

Later look to the mode display, in parallel with dialing the altitude:

(日) (四) (日) (日) (日)

43/60

A PRP Emergency!!

Outline

Overview of Constraint Analysis

Example #1 Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

WHAT IF ... the pilot had to handle an auditory interruption that required a manual button press response?

boeing FDF tt1

 \rightarrow

comprehend situation comprehend clearance get vertical_mode set altitude check limit check ap status

auditory interruption

 \rightarrow

auditory tone, attend auditory perceive auditory tone, choose_response press key.

<ロ > < 部 > < 言 > < 言 > 三 の Q @ 44/60

A PRP Emergency!!

Outline

Overview of Constraint Analysis

Example #1 Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

WHAT IF ... the pilot had to handle an auditory interruption that required a manual button press response?

task

auditory interruption, boeing FDF tt1.

Auditory Interruption

- Outline
- Overview o Constraint Analysis
- Example # Dual-tasks
- How It Works
- Example #2: 777 Cockpit
- Example #3 ACT-R Critique
- Summary

< □ > < 클 > < 클 > < 클 > < 클 > < 클 < 20,00
 46/60

Visual Interruption

- Outline
- Overview o Constraint Analysis
- Example # Dual-tasks
- How It Works
- Example #2: 777 Cockpit
- Example #3 ACT-R Critique
- Summary

Visual Interruption

Overview o Constraint Analysis

Example # Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

▲ □ > ▲ @ > ▲ 볼 > ▲ 볼 > ▲ 월 > 2000 48/60

Same Task Spec, Different Objective: Reduce Memory Load

24 Models

Outline

Overview of Constraint Analysis

Example #1 Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

Alina Chu (UM) and Katherine Eng (NASA)

2 interfaces {FDF, 777} \times 2 tasks \times 3 interruption conitions \times 2 optimizations {time, WM}

Interesting predictions:

- In FDF faster than 777
- 2 Little difference in WM load
- Simple auditory interruption slightly increases time and WM load
- Simple visual interruption increases time more, and effect is greater for 777

Outline

Overview o Constraint Analysis

Example # Dual-tasks

How It Works

Example #2: 777 Cockpit

Example #3 ACT-R Critique

Summary

But is this just a different way to do architectural modeling, or does it really change the way we should build and test cognitive models?

ACT-R vs. EPIC, in Psych Review (2001)

- Outline
- Overview of Constraint Analysis
- Example #1 Dual-tasks
- How It Works
- Example #2: 777 Cockpit
- Example #3: ACT-R Critique
- Summary

- In a prominent article promoting an ACT-R account of PRP effects, Byrne & Anderson (2001) created models that exhibited a *dual-task interference effect* based on ACT-R's theory of memory activation.
 - In ACT-R, retrieval time from memory is sensitive to a limit on total source activation.
 - The more retrieval features on the goal, the less activation each features receives.

• The models exhibited a dual-task interference effect because the source activation was less when tasks overlapped and the goal contained features from both tasks.

We can model this as a constraint.

An ACT-R model of the PRP task

Our reconstruction of one of the models in Byrne & Anderson (2001), *Psychological Review*:

Outline

Overview o Constraint Analysis

Example #3 Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3: ACT-R Critique

Summary

53/60

What did the original ACT-R model explain?

Outline

Overview of Constraint Analysis

Example #1 Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3: ACT-R Critique

Summary

- Byrne and Anderson created several ACT-R models (based on particular strategies) that fit the data.
- But if a better strategy is available, given ACT-R's constraints, has skilled PRP performance been explained?

<ロト<団ト<臣ト<臣ト 54/60

ACT-R model (optimal)

The optimal model not only deferred response, **but deferred** retrieval too. Byrne and Anderson didn't think of this—and neither did we.

An Astonishing Result

Outline

Overview o Constraint Analysis

Example # Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3: ACT-R Critique

Summary

Using CORE, we performed a systematic analysis of possible strategies for ACT-R models on all four PRP experiments modeled in Bryne & Anderson (2001), computing the expected payoff based on 40,000 runs.

Experiment

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > の 8

An Astonishing Result

Outline

Overview o Constraint Analysis

Example # Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3: ACT-R Critique

Summary

Using CORE, we performed a systematic analysis of possible strategies for ACT-R models on all four PRP experiments modeled in Bryne & Anderson (2001), computing the expected payoff based on 40,000 runs.

In each experiment, the Byrne & Anderson models consistently underperform—sometimes by substantial amounts—the best strategy.

Summary/Nuggets de Oro

- Outline
- Overview of Constraint Analysis
- Example #1 Dual-tasks
- How It Works
- Example #2 777 Cockpit
- Example #3 ACT-R Critique
- Summary

- Adaptation is bounded by the task environment and architecture.
- An architecural theory explains behavior, with no further assumptions, if the optimal performance predicted by the theory corresponds to the observed asymptotic bound.
- Constraint satisfaction can be used to predict the asymptotic bound on adaptation, formally deriving the predictions of an architectural theory while minimizing assumptions about strategy.
- Significant theoretical and applied benefits may accrue from this approach and its associated tools.

Nuggets de Carbón

Outline

- Overview o Constraint Analysis
- Example #1 Dual-tasks
- How It Works
- Example #2 777 Cockpit
- Example #3 ACT-R Critique

Summary

- Efficiency. Some models take 2 seconds, some take 24 hours, some never return.
- Interaction with task simulation. Presently, can't be done.
- **Difficulty formalizing learning constraints.** Presently, can't be done (though we haven't really tried).

<ロト<団ト<量ト<量ト<量ト 59/60

Acknowledgements

People:

- Alina Chu (Michigan)
- Katherine Eng (NASA Ames)
- Jonathon Kopecky (Michigan)
- Juliet Richardson (Convergys, UK)
- Mason Smith (Michigan)
- Irene Tolinger (NASA Ames)
- Agencies/companies:
 - Office of Naval Research
 - NASA (Ames Research Center)

Boeing

Outline

Overview of Constraint Analysis

Example #1 Dual-tasks

How It Works

Example #2 777 Cockpit

Example #3 ACT-R Critique

Summary