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Key Claims

Outline

©@ Human Task Performance can be predicted by formally
reasoning about the implications of a theory rather
than running a simulation.

@ A theory of cognitive architecture explains empirically
observed asymptotic bounds on performance if there is
substantial correspondence between the asymptote
and the optimal performance implied by the theory.

© The ability to automatically derive optimal predictions

from cognitive theory has significant theoretical and
applied benefits.



How Architectures Make Predictions

Outline

ARCHITECTURE +
KNOWLEDGE (STRATEGY)
= BEHAVIOR



A Conundrum for Cognitive Theory

Outline

Complete cognitive theories must take the form
architectures that admit of arbitrary knowledge/strategic
variation

BUT: knowledge, strategy can become theoretical degrees of
freedom in modeling data

@ Explanation may reside primarily in strategy, not
architecture

@ Strategy may have been selected to fit the data at hand



A Conundrum for Cognitive Theory

Outline

Complete cognitive theories must take the form
architectures that admit of arbitrary knowledge/strategic
variation

BUT: knowledge, strategy can become theoretical degrees of
freedom in modeling data

@ Explanation may reside primarily in strategy, not
architecture

@ Strategy may have been selected to fit the data at hand
e (But that never happens, right?)



Two Possible Solutions

Outline

@ Focus on “immediate behavior” (Newell 1990)
o Behavior <15
o Problem: Even < 1 s behavior shows surprising amount of
strategic modulation (Meyer & Kieras, 1997)

@ Theory of learning/instruction taking
o “Close the loop”, so strategy not under theorist’s control
o Problem: complexity; testing many aspects of theory
simultaneously



Overview of
Constraint
Analysis

Constraint Analysis Overview

e Adaptive behavior is bounded by Objective +
Environment + Knowledge + Architecture
(Simon 1992)

e Constraint satisfaction techniques can be used to
calculate the optimal behavior given a set of
heterogeneous constraints plus an objective.

@ In short, combining Formal Rational Analysis with
Bounded Rationality



Constraint Analysis Overview

behaviors that
minimize time

behaviors that
Overview of minimize working memory load
Constraint

Analysis

architecturally

R possible behaviors

constrained by
the task environment

behaviors satisfying both
task and architecture constraints



Explaining the Bounds on Adaptation

WHY HERE?
Overview of

Constraint

Analysis
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Typical PRP (psychological refractory period)
Experiment

@ Choice response to a tone i
(T1) and a pattern (T2). \

g
Erample 41 @ Give priority to the tone 3 . I
Dual—fask’s . response. %
[+
@ Tone presented first,
pattern stimulus is
presented after an SOA. SOA

@ According to Meyer and Kieras, elevated RT2 is because
participants ensure T2 response is after T1 response

@ They called this Strategic Response Deferment (SRD).
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Simple Dual-Tasking PRP Study

Ruthruff et al., 2003 report a
PRP experiment with:

@ Single participant.

Example #1: @ Unordered responses.

Dual-tasks
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Simple Dual-Tasking PRP Study

SOA of 217ms (Ruthruff et al. 2003)

0.018

Ruthruff et al., 2003 report a o016 |

0.014 1
PRP experiment with: 50012 ]
E 0.01 T1
@ Single participant. gooos s o
0.006 1
Example #1: @ Unordered responses. 0.004 |
Dual-tasks N . . f b N ¢ MUZ 1
ow Imagine If subject mus P N
produce ordered responses: Latency after T2 stimulus
o At |0ng SOAS no SRD is Frequency of response latency for T1 and T2
. . at -216ms SOA phase 3 (Ruthruff et al.,
required to avoid response 2003)
reversal. o014
0.012
@ At short SOAs more than _ oo

T
-T2

50% response reversal when g 0008

. . . § 0.006
objective not sensitive to £ oos
reversal. 0.002 |
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Latency since T1 stimulus
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A Very Simple Constraint Model

@ Constraints consist of the mean overall RTs and SDs.

E: | i3 . . . . .
Dot @ Space of strategies defined by a single variable: Extension

of T2 response (E).
o A simple form of Meyer and Kieras’ SRD
@ Objective is to minimize duration and response reversals.
o Note the trade-off: Reduced reversals vs. total duration.
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Combining Task + Architecture to Compute

Optimal Behavior

@ Now we can compute cost 200

function from Monte-carlo Y

simulations given this 700 l

subject’s standard deviation 600 -l
Example #1: of RTs. i

Dual-tasks

@ Note that this combines two
features:

@ Constraints on the TASK
(ordering and speed 200
constraints, as expressed
through explicit payoff).

400

Cost

300

100

@ Constraints on the T
ARCHITECTURE (noise TEERRARARS
in the performance __ T2extension (ms) __
system).
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Simple Ordered Responses

New experiments (Kopecky):

© Visual cue appears.
@ Subject must quickly
press two keys in order:

o Left index, right
middle.

Example #1:
Dual-tasks

e etc.

© Subject rewarded for
speed and accuracy.

o Left middle, left index.
o Right ring, left middle.

SIMPLE MODEL

@ Subjects defer R2 for IR/
milliseconds after R1,
where IRl maximizes
payoff given their
indiosyncractic variance.
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Explicit Payoff Schemes

Subjects were rewarded with
CASH with explicit payoff
schemes. Example:
@ If correct and Total RT
< 500ms, then award
100 — RT /5 points.
o If correct and Total RT
>= 500ms, then award zero
points.

Example #1:
Dual-tasks

@ If incorrect, then lose 100
points.
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Sample Payoff Curves at 4 Different Standard
Deviations (SD) of IRI




Example #1:
Dual-tasks

Sample Payoff Curves at 4 Difl

Deviations (SD) of IRI
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Example #1:
Dual-tasks

Predicted optimal IRl as function of SD of IRI

Optimal IRI

S 4 ——  Accuracy
—“— Speed
° T T T T T
0 20 40 60 80
sd of IRI
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A Good Subject




Another Good Subject




A So-So Subject




All Subjects, all Finger-Pairs:
Actual vs. Predicted Optimal Points

Predicted Bound on
(Optimal) Performance

Example #1:
Dual-tasks
g4

Actual Points

T
600 800

Optimal Points
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All Subjects, all Finger-Pairs:
Actual vs. Predicted Optimal Points

Predicted Bound on
g | (Optimal) Performance .
Example #1: = &
Dual-tasks Pt
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This was a simple task where the strategy
space = single quantitative variable.

Analysis of more sophisticated strategies
needs a more general solution. ..

26 / &0



Cognitive Constraint Modeling

For example, minimize time |

objective / .

constraints function "

How It Works i tOSk .
: ; .. behavior
' opfimizing description
i constraint
i < satisfaction (composed
architecture skill)

____________________________
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Cognitive Constraint Modeling

The tool is called CORE: Constraint-based Optimizing
Reasoning Engine

V P;: { (isa,process) (name,initclick)
(start,S) (duration,D)) } C P,
-
3P, { (isa,process) (name,click) (start,S) } C P,
AS+Ds S
AS -(8§+ D;) = 300 3)

How It Works Saz%“‘tr
St
%,

Constraints are logical relations between variables. They
may specify partial values (e.g., duration, D; > 24 ms), are
non-directional (E.g. S; <= E; + 300 ms), and declarative.
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Behavior Graphs

Boxes represent
cascaded processes.

& @ Rows of processes

5 pattern
percive B represent resources
g (cognition,
How It Works I 1 L. | perceptual, motor)
= - e It and world events.
- Ll @ Time is represented

from left to right.

@ Horizontal position
represents onset.

&%

click

@ Spatial extent
represents duration.
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Dual-task (PRP) with simple set of process
& information-flow constraints (50ms SOA)

How It Works o

0 5 27 46
(?nend - init lelec| unlock-

task g

clk gk
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But does the approach scale to more
Example #2: Complex taSkS?

777 Cockpit

21 /&0



Comparing two cockpit designs

Example #2:
777 Cockpit

Goals:
@ New design should reduce errors

@ New design should be no slower than old

27 / A0



777 Interface: Task 1 - ¢ @

“You are following the altitude restrictions of the Moorpark 3
arrival; your last altitude clearance was 1-7 thousand. Descend
via the Moorpark 3 arrival; maintain 1-2 thousand”

. Verify current
vertical mode

. Dial Altitude
Selector down
to 12,000

. Hit Altitude
Selector

. Verify new
altitude

. Verify new
vertical mode
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“You are following the altitude restrictions of the Moorpark 3
arrival; your last altitude clearance was 1-7 thousand. Descend
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777 Interface: Task 1 - ¢ @

“You are following the altitude restrictions of the Moorpark 3
arrival; your last altitude clearance was 1-7 thousand. Descend
via the Moorpark 3 arrival; maintain 1-2 thousand”

. ® v (Y o SE (C)im
. Verl_fy current g EEEg O —
vertical mode ! : n

. Dial Altitude - E Q‘J

) NQ : l‘
Selector down

to 12,000

. Hit Altitude
Selector

. Verify new
altitude

. Verify new
vertical mode




777 Interface: Task 1 - ¢ @

“You are following the altitude restrictions of the Moorpark 3
arrival; your last altitude clearance was 1-7 thousand. Descend
via the Moorpark 3 arrival; maintain 1-2 thousand”

vertical mode N

. Dial Altitude d 70‘ :. va # '
Selector down
to 12,000

. Hit Altitude
Selector

. Verify new
altitude

. Verify new
vertical mode

o ©]
- Wiy STTE =] m- o - — 2]
m\ : "““‘
@




The Demands of Applied Modeling

@ Not just interested in time, but memory load and ability
to handle interruption
@ Tracking memory load requires specifying what must be

Example #2: held in memory and when
777 Cockpit

@ Our task specification language and models capture this in
the form of information flow constraints. . .

20 /A0



A Natural Task Specification

Captures the task's information flow rather than a fixed
sequence of steps.

boeing FDF tt1
—>
Example #2: comprehend situation : FLIGHT PLAN LAST CLEARANCE,
777 Cockpit comprehend clearance : INSTRUCTION ALTITUDE,
get vertical_mode after INSTRUCTION ALTITUDE : VMODE,
set altitude to ALTITUDE given INSTRUCTION VMODE : DIALED PUSHED,
check limit against ALTITUDE after DIALED PUSHED : LMT _CHECKED,

check ap_status against INSTRUCTION after LMT_CHECKED : AP CHECKED.

A0/ A0



Emergent Strategies

o Fully specified task
constraints may still
leave many details of
behavior unspecified

behaviors that
minimize time

behaviors that
minimize working memory load

@ These details are
automatically worked
5;;"&‘;';?;*;? out by CORE to satisfy
the architectural

constraints

architecturally

ssible behaviors
possible behaviors L

constrained by
the task environment

o Example: Precise
timing of the
perception of the
mode information

behaviors satisfying both
task and architecture constraints
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Emergent Strategies

Early look to the mode display, in series with the rest of
the task:

Example #2: - - N | 1 11 bl | | i 1l a i |
777 Cockpit
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Emergent Strategies

Later look to the mode display,
altitude:

in parallel with dialing the

. - . . Em [ -
= B mE bm B mbhemEm @& @b =2 R B 2 Bk
Example #2:
777 Cockpit
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A PRP Emergency!!

WHAT IF ... the pilot had to handle an auditory
interruption that required a manual button press
response?

s . N
Example #2: boeing FDF tt1 auditory interruption
777 Cockpit —
—
comprehend situation N
comprehend clearance auditory to.n ©
. attend auditory

get vertical mode erceive auditory tone,

set altitude Zhoose res ons:y ’

check limit _Tes]H

check ap_status press key.

A4 1 A0



A PRP Emergency!!

WHAT IF ... the pilot had to handle an auditory
interruption that required a manual button press
response?

task
Example #2:
777 Cockpit _—_—

auditory interruption,
boeing FDF ttl.
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Auditory Interruption

Example #2:
777 Cockpit




Visual Interruption

Example #2:
777 Cockpit




Visual Interruption

Example #2:
777 Cockpit




Same Task Spec, Different Objective:
Reduce Memory Load

Example #2:
777 Cockpit




24 Models

Alina Chu (UM) and Katherine Eng (NASA)

2 interfaces {FDF, 777} x 2 tasks x 3 interruption coni-
tions x 2 optimizations {time, WM} J

Interesting predictions:
Example #2: © FDF faster than 777
777 Cockpit
@ Little difference in WM load

© Simple auditory interruption slightly increases time and
WM load

@ Simple visual interruption increases time more, and effect
is greater for 777
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But is this just a different way to do

architectural modeling, or does it really

Brample #2: change the way we should build and test
cognitive models?

51T /A0



ACT-R vs. EPIC, in Psych Review (2001)

@ In a prominent article promoting an ACT-R account of
PRP effects, Byrne & Anderson (2001) created models
that exhibited a dual-task interference effect based on
ACT-R’s theory of memory activation.

o In ACT-R, retrieval time from memory is sensitive to a
limit on total source activation.

o The more retrieval features on the goal, the less activation
each features receives.

Example #3:

ACT-R @ The models exhibited a dual-task interference effect
because the source activation was less when tasks
overlapped and the goal contained features from both
tasks.

Critique

We can model this as a constraint.

&Y /A0



An ACT-R model of the PRP task

Our reconstruction of one of the models in Byrne & Anderson
(2001), Psychological Review:

0

tone

5
perceive
10
) 5 15 2 a9
Example #3: o NN v P
ACT-R 7
Critique task

54
ook o

begin finish
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What did the original ACT-R model explain?

@ Byrne and Anderson created several ACT-R models (based
on particular strategies) that fit the data.

e But if a better strategy is available, given ACT-R’s
constraints, has skilled PRP performance been

Example #3: explained?

ACT-R
Critique

A / AO



ACT-R model (optimal)

Example #3:
ACT-R
Critique

49

ot -

65

The optimal model not only deferred response, but deferred
retrieval too. Byrne and Anderson didn't think of this—and
neither did we.
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An Astonishing Result

nounlock
2@ earlyattend
3@ cognitionfree
40 preparefree

Using CORE, we performed a g 60 sooro
systematic analysis of possible 2 fo oo
. A =
strategies for ACT-R models on s | & 4+
S = F -

all four PRP experiments
modeled in Bryne & Anderson
(2001), computing the expected
payoff based on 40,000 runs.

Payoff per 40 trial block (awarded points)
200
1

Example #3:
ACT-R
Critique Experiment

1234567 1234567 1234567 1234567
E1 E E3 E4
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An Astonishing Result

800
|

@ nounlock
. 20 earlyattend
g 3@ cognitionfree
. 'g 40 preparefree
Using CORE, we performed a 3 8- 60 sooro
systematic analysis of possible H = = 5""°°{
strategies for ACT-R models on g o | & 4+ i
. 3 v F & L
all four PRP experiments H =
modeled in Bryne & Anderson g a2
(2001), computing the expected & °
payoff based on 40,000 runs.
Example #3: © 7 1234567 1234567 1234567 1234567
ACT-R E1 E E3 E4
Critique Experiment

In each experiment, the Byrne & Anderson models
consistently underperform—sometimes by substantial
amounts—the best strategy.
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Summary/Nuggets de Oro

@ Adaptation is bounded by the task environment and
architecture.

@ An architecural theory explains behavior, with no further
assumptions, if the optimal performance predicted by the
theory corresponds to the observed asymptotic bound.

© Constraint satisfaction can be used to predict the
asymptotic bound on adaptation, formally deriving
the predictions of an architectural theory while
minimizing assumptions about strategy.

Summary

@ Significant theoretical and applied benefits may
accrue from this approach and its associated tools.
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Nuggets de Carbdn

@ Efficiency. Some models take 2 seconds, some take 24
hours, some never return.

@ Interaction with task simulation. Presently, can't be
done.

© Difficulty formalizing learning constraints. Presently,
can't be done (though we haven't really tried).

Summary

B0 /AN
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