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Key Claims

1 Human Task Performance can be predicted by formally
reasoning about the implications of a theory rather
than running a simulation.

2 A theory of cognitive architecture explains empirically
observed asymptotic bounds on performance if there is
substantial correspondence between the asymptote
and the optimal performance implied by the theory.

3 The ability to automatically derive optimal predictions
from cognitive theory has significant theoretical and
applied benefits.
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How Architectures Make Predictions

ARCHITECTURE +
KNOWLEDGE (STRATEGY)

= BEHAVIOR
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A Conundrum for Cognitive Theory

Complete cognitive theories must take the form
architectures that admit of arbitrary knowledge/strategic
variation

BUT: knowledge, strategy can become theoretical degrees of
freedom in modeling data

Explanation may reside primarily in strategy, not
architecture

Strategy may have been selected to fit the data at hand

(But that never happens, right?)
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Two Possible Solutions

1 Focus on “immediate behavior” (Newell 1990)

Behavior < 1 s
Problem: Even < 1 s behavior shows surprising amount of
strategic modulation (Meyer & Kieras, 1997)

2 Theory of learning/instruction taking
“Close the loop”, so strategy not under theorist’s control
Problem: complexity; testing many aspects of theory
simultaneously
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Constraint Analysis Overview

Adaptive behavior is bounded by Objective +
Environment + Knowledge + Architecture
(Simon 1992)

Constraint satisfaction techniques can be used to
calculate the optimal behavior given a set of
heterogeneous constraints plus an objective.

In short, combining Formal Rational Analysis with
Bounded Rationality
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Constraint Analysis Overview

architecturally

possible behaviors
possible behaviors

 constrained by

 the task environment

behaviors satisfying both 

task and architecture constraints

behaviors that 

minimize time

behaviors that 

minimize working memory load
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Explaining the Bounds on Adaptation

WHY HERE?
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Typical PRP (psychological refractory period)
Experiment

Choice response to a tone
(T1) and a pattern (T2).

Give priority to the tone
response.

Tone presented first,
pattern stimulus is
presented after an SOA.

According to Meyer and Kieras, elevated RT2 is because
participants ensure T2 response is after T1 response

They called this Strategic Response Deferment (SRD).
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Simple Dual-Tasking PRP Study

Ruthruff et al., 2003 report a
PRP experiment with:

Single participant.

Unordered responses.

Now imagine if subject must
produce ordered responses:

At long SOAs no SRD is
required to avoid response
reversal.

At short SOAs more than
50% response reversal when
objective not sensitive to
reversal.
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A Very Simple Constraint Model

Constraints consist of the mean overall RTs and SDs.

Space of strategies defined by a single variable: Extension
of T2 response (E).

A simple form of Meyer and Kieras’ SRD

Objective is to minimize duration and response reversals.

Note the trade-off: Reduced reversals vs. total duration.
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Combining Task + Architecture to Compute
Optimal Behavior

Now we can compute cost
function from Monte-carlo
simulations given this
subject’s standard deviation
of RTs.

Note that this combines two
features:

1 Constraints on the TASK
(ordering and speed
constraints, as expressed
through explicit payoff).

2 Constraints on the
ARCHITECTURE (noise
in the performance
system).
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Simple Ordered Responses

New experiments (Kopecky):

1 Visual cue appears.
2 Subject must quickly

press two keys in order:

Left index, right
middle.
Left middle, left index.
Right ring, left middle.
etc.

3 Subject rewarded for
speed and accuracy.

SIMPLE MODEL

Subjects defer R2 for IRI
milliseconds after R1,
where IRI maximizes
payoff given their
indiosyncractic variance.
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Explicit Payoff Schemes

Subjects were rewarded with
CASH with explicit payoff
schemes. Example:

If correct and Total RT
< 500ms, then award
100− RT/5 points.

If correct and Total RT
>= 500ms, then award zero
points.

If incorrect, then lose 100
points.
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Sample Payoff Curves at 4 Different Standard
Deviations (SD) of IRI
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Predicted optimal IRI as function of SD of IRI
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A Good Subject
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Another Good Subject
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A So-So Subject
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All Subjects, all Finger-Pairs:
Actual vs. Predicted Optimal Points
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Figure 4.13: Scatter Plot of actual points as a function of optimal points
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This was a simple task where the strategy
space = single quantitative variable.

Analysis of more sophisticated strategies
needs a more general solution. . .
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Cognitive Constraint Modeling

The tool is called CORE: Constraint-based Optimizing
Reasoning Engine

Constraints are logical relations between variables. They
may specify partial values (e.g., duration, Di > 24 ms), are
non-directional (E.g. Sj <= Ei + 300 ms), and declarative.
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Behavior Graphs

Boxes represent
cascaded processes.

Rows of processes
represent resources
(cognition,
perceptual, motor)
and world events.

Time is represented
from left to right.

Horizontal position
represents onset.

Spatial extent
represents duration.
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Dual-task (PRP) with simple set of process
& information-flow constraints (50ms SOA)
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But does the approach scale to more
complex tasks?
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Comparing two cockpit designs

777 FDF

Goals:

New design should reduce errors

New design should be no slower than old
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vertical mode
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The Demands of Applied Modeling

Not just interested in time, but memory load and ability
to handle interruption

Tracking memory load requires specifying what must be
held in memory and when

Our task specification language and models capture this in
the form of information flow constraints. . .
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A Natural Task Specification

Captures the task’s information flow rather than a fixed
sequence of steps.

a natural task spec

Captures the task’s information flow

rather than a fixed sequence of steps

boeing FDF tt1
    —>

    comprehend situation                                      : FLIGHT_PLAN    LAST_CLEARANCE,

    comprehend clearance                                                   : INSTRUCTION   ALTITUDE,
    get vertical_mode after   INSTRUCTION ALTITUDE             : VMODE,

    set altitude to ALTITUDE given INSTRUCTION VMODE        :  DIALED PUSHED,

    check limit against ALTITUDE after  DIALED PUSHED           :  LMT_CHECKED,

    check ap_status against INSTRUCTION after LMT_CHECKED  :  AP_CHECKED.
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Emergent Strategies

Fully specified task
constraints may still
leave many details of
behavior unspecified

These details are
automatically worked
out by CORE to satisfy
the architectural
constraints

Example: Precise
timing of the
perception of the
mode information

architecturally

possible behaviors
possible behaviors

 constrained by

 the task environment

behaviors satisfying both 

task and architecture constraints

behaviors that 

minimize time

behaviors that 

minimize working memory load

41 / 60



Outline

Overview of
Constraint
Analysis

Example #1:
Dual-tasks

How It Works

Example #2:
777 Cockpit

Example #3:
ACT-R
Critique

Summary

Emergent Strategies

Early look to the mode display, in series with the rest of
the task:
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Emergent Strategies

Later look to the mode display, in parallel with dialing the
altitude:
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A PRP Emergency!!

WHAT IF . . . the pilot had to handle an auditory
interruption that required a manual button press
response?

what if……

The pilot had to handle an auditory
interruption that required a manual button
press response?

boeing FDF tt1
 !

comprehend situation           

comprehend clearance
get vertical_mode
set altitude
check limit
check ap_status

auditory interruption
 !

auditory tone,
 attend auditory
    perceive auditory tone,
    choose_response

press key.

what if……

The pilot had to handle an auditory
interruption that required a manual button
press response?

boeing FDF tt1
 !

comprehend situation           

comprehend clearance
get vertical_mode
set altitude
check limit
check ap_status

auditory interruption
 !

auditory tone,
 attend auditory
    perceive auditory tone,
    choose_response

press key.
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A PRP Emergency!!

WHAT IF . . . the pilot had to handle an auditory
interruption that required a manual button press
response?

what if……

The pilot had to handle an auditory
interruption that required a manual button
press response?

 task

    !
    boeing FDF tt1.

 task

    !

boeing FDF tt1.

auditory interruption,
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Auditory Interruption
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Visual Interruption
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Visual Interruption
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Same Task Spec, Different Objective:
Reduce Memory Load
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24 Models

Alina Chu (UM) and Katherine Eng (NASA)

2 interfaces {FDF, 777} × 2 tasks × 3 interruption coni-
tions × 2 optimizations {time, WM}

Interesting predictions:

1 FDF faster than 777

2 Little difference in WM load

3 Simple auditory interruption slightly increases time and
WM load

4 Simple visual interruption increases time more, and effect
is greater for 777
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But is this just a different way to do
architectural modeling, or does it really
change the way we should build and test

cognitive models?
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ACT-R vs. EPIC, in Psych Review (2001)

In a prominent article promoting an ACT-R account of
PRP effects, Byrne & Anderson (2001) created models
that exhibited a dual-task interference effect based on
ACT-R’s theory of memory activation.

In ACT-R, retrieval time from memory is sensitive to a
limit on total source activation.
The more retrieval features on the goal, the less activation
each features receives.

The models exhibited a dual-task interference effect
because the source activation was less when tasks
overlapped and the goal contained features from both
tasks.

We can model this as a constraint.
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An ACT-R model of the PRP task

Our reconstruction of one of the models in Byrne & Anderson
(2001), Psychological Review:
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What did the original ACT-R model explain?

Byrne and Anderson created several ACT-R models (based
on particular strategies) that fit the data.

But if a better strategy is available, given ACT-R’s
constraints, has skilled PRP performance been
explained?
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ACT-R model (optimal)

The optimal model not only deferred response, but deferred
retrieval too. Byrne and Anderson didn’t think of this—and
neither did we.
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An Astonishing Result

Using CORE, we performed a
systematic analysis of possible
strategies for ACT-R models on
all four PRP experiments
modeled in Bryne & Anderson
(2001), computing the expected
payoff based on 40,000 runs.

send a signal from attention in the vision buffer (vb) to 
perception; perceive the stimulus and return what is 
PERCEIVED; and hold what is PERCEIVED in the vision 
buffer (vb).  The rule specified above is in the syntax 
required for the specification of models to CORE (Howes et 
al.,  2004; Vera et al.,  2004).  Further details of the 
motivations for IRG and its differences to GOMS can be 
found in Howes, Lewis, Vera and Richardson (2005).  
Further examples of the use of IRG for modeling cognition 
can be found in Eng, Lewis, Tollinger, Chu, Howes and 
Vera (2006) and Vera,  Howes, Lewis, Tollinger, Eng, 
Richardson (2005).

E1 E2 E3 E4

nounlock

earlyattend

cognitionfree

preparefree

srdzero

deferattend

srd100

Predicted payoff achieved by each strategy 

 grouped by experiment (E1 to E4).
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Figure 2: Predicted payoff grouped by experiment.  The 

horizontal bars indicate the suboptimal payoff ranges predicted 

by Byrne and Anderson’s (2001) DeferAttend and EarlyAttend 

strategies.
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   A total of 9 rules were required to specify the functions of 
the architecture.  These were supported with specifications 
of process durations and the functions describing the 
operation of ACT-R’s subsymbolic activation mechanism.  
The replication was an update of that described in Howes et 
al. (2004).  We also encoded three IRG rules to describe the 
task.  For example, the rule for the Experiment 3 task 2 is:

patterntask - [ RCTRL ACTRL ]  - [C1 C2]  ! 
 parameter( task2 STIMULUS ),
 see [STIMULUS ACTRL ]        - SEEN,
 select response to SEEN pattern   - SELECTION,
 defer [ RCTRL ]                            - DEFER,
 respond task2 with motor to [ SELECTION DEFER ] - [processorfree C1 C2].

   

The patterntask rule takes two control signals, RCTRL and 
ACTRL as input.  The ‘see’ subtask (defined above) is part 
of the right-hand side of patterntask but cannot start until 
the ACTRL signal is received.  The ‘defer’ subtask cannot 
start until the RCTRL signal is received but does not have 
to wait until ‘select response’ has finished.  In addition 
‘respond’ cannot be initiated until both the relevant 
SELECTION has been retrieved and the DEFER process 
has completed.  In Figure 1, the control signals are 
information flows represented by vertical bars connecting 

communicating processes.   The patterntask rule returns two 
control signals C1 and C2.

  The grammar is used to expand a task description into a 
set of resource and information-flow constraints on the 
model. Next, constraint satisfaction determines a schedule 
given the constraints and the result is a behaviour graph 
such as that illustrated in Figure 1.
   By manipulating the mappings specified in the IRG rules 
we explored the implications of the combination of ACT-R/
PM and a fuller range of strategic constraints for all four of 
Schumacher et al.’s (1999) experiments.  We explored two 
dimensions of the strategies: (1) the duration of the strategic 
deferment (the unlock process); (2) which task 2 process 
start times are conditional on which task 1 process end 
times.

2. Determine the payoff

We calculated the payoff achieved according to 
Schumacher et al.’s (1999) payoff scheme (see above).  The 
achieved payoffs for each strategy + ACT-R/PM applied to 
each experimental task are represented in Figure 2 with 
95% confidence intervals.  We averaged the payoff across 
hard and easy conditions.  Each bar is the mean of 40,000 
Monte Carlo runs.

3. Select the strategies with the highest payoff

In order to derive a prediction for asymptotic human 
performance on Schumacher et al.’s (1999) PRP 
experiments we chose the strategy with the highest payoff 
for each experiment.  It happens,  though it need not, that for 
all experiments the best strategies of those that we 
considered were the SRDzero and the PrepareFree strategy.  
We selected the very best strategy and any with overlapping 
95% confidence intervals.  The SRDzero strategy defers 
task 2 performance until after task 1 response but without 
introducing a 50ms delay (unlock).  The PrepareFree 
strategy uses a 50ms delay but the delay is conditional on 
an earlier control signal from the motor system.  These 
strategies are at least 50 points better than the DeferAttend 
strategy used by Byrne and Anderson (2001).

4. Contrast predictions to data

Having used the predicted payoffs to discover a candidate 
for the best strategies given the limits imposed by the 
architecture we analysed the predicted RTs and error rates 
for each of the experiments.   The predicted RTs are 
illustrated in Figure 3.  They are substantially faster than 
the predictions made by Byrne and Anderson (2001) but 
slower than the fastest possible strategy (which was not the 
highest payoff strategy). In Figure 3, the data is represented 
by solid lines and the model’s predicted RTs at short-SOA 
(given the fit to long SOA) by dashed lines.  (Remember 
that the prediction is derived given the assumption that 
people adapt within the bounds set by the architecture.)  

In each experiment, the Byrne & Anderson models
consistently underperform—sometimes by substantial
amounts—the best strategy.
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An Astonishing Result

Using CORE, we performed a
systematic analysis of possible
strategies for ACT-R models on
all four PRP experiments
modeled in Bryne & Anderson
(2001), computing the expected
payoff based on 40,000 runs.

send a signal from attention in the vision buffer (vb) to 
perception; perceive the stimulus and return what is 
PERCEIVED; and hold what is PERCEIVED in the vision 
buffer (vb).  The rule specified above is in the syntax 
required for the specification of models to CORE (Howes et 
al.,  2004; Vera et al.,  2004).  Further details of the 
motivations for IRG and its differences to GOMS can be 
found in Howes, Lewis, Vera and Richardson (2005).  
Further examples of the use of IRG for modeling cognition 
can be found in Eng, Lewis, Tollinger, Chu, Howes and 
Vera (2006) and Vera,  Howes, Lewis, Tollinger, Eng, 
Richardson (2005).
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Figure 2: Predicted payoff grouped by experiment.  The 

horizontal bars indicate the suboptimal payoff ranges predicted 

by Byrne and Anderson’s (2001) DeferAttend and EarlyAttend 

strategies.
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   A total of 9 rules were required to specify the functions of 
the architecture.  These were supported with specifications 
of process durations and the functions describing the 
operation of ACT-R’s subsymbolic activation mechanism.  
The replication was an update of that described in Howes et 
al. (2004).  We also encoded three IRG rules to describe the 
task.  For example, the rule for the Experiment 3 task 2 is:

patterntask - [ RCTRL ACTRL ]  - [C1 C2]  ! 
 parameter( task2 STIMULUS ),
 see [STIMULUS ACTRL ]        - SEEN,
 select response to SEEN pattern   - SELECTION,
 defer [ RCTRL ]                            - DEFER,
 respond task2 with motor to [ SELECTION DEFER ] - [processorfree C1 C2].

   

The patterntask rule takes two control signals, RCTRL and 
ACTRL as input.  The ‘see’ subtask (defined above) is part 
of the right-hand side of patterntask but cannot start until 
the ACTRL signal is received.  The ‘defer’ subtask cannot 
start until the RCTRL signal is received but does not have 
to wait until ‘select response’ has finished.  In addition 
‘respond’ cannot be initiated until both the relevant 
SELECTION has been retrieved and the DEFER process 
has completed.  In Figure 1, the control signals are 
information flows represented by vertical bars connecting 

communicating processes.   The patterntask rule returns two 
control signals C1 and C2.

  The grammar is used to expand a task description into a 
set of resource and information-flow constraints on the 
model. Next, constraint satisfaction determines a schedule 
given the constraints and the result is a behaviour graph 
such as that illustrated in Figure 1.
   By manipulating the mappings specified in the IRG rules 
we explored the implications of the combination of ACT-R/
PM and a fuller range of strategic constraints for all four of 
Schumacher et al.’s (1999) experiments.  We explored two 
dimensions of the strategies: (1) the duration of the strategic 
deferment (the unlock process); (2) which task 2 process 
start times are conditional on which task 1 process end 
times.

2. Determine the payoff

We calculated the payoff achieved according to 
Schumacher et al.’s (1999) payoff scheme (see above).  The 
achieved payoffs for each strategy + ACT-R/PM applied to 
each experimental task are represented in Figure 2 with 
95% confidence intervals.  We averaged the payoff across 
hard and easy conditions.  Each bar is the mean of 40,000 
Monte Carlo runs.

3. Select the strategies with the highest payoff

In order to derive a prediction for asymptotic human 
performance on Schumacher et al.’s (1999) PRP 
experiments we chose the strategy with the highest payoff 
for each experiment.  It happens,  though it need not, that for 
all experiments the best strategies of those that we 
considered were the SRDzero and the PrepareFree strategy.  
We selected the very best strategy and any with overlapping 
95% confidence intervals.  The SRDzero strategy defers 
task 2 performance until after task 1 response but without 
introducing a 50ms delay (unlock).  The PrepareFree 
strategy uses a 50ms delay but the delay is conditional on 
an earlier control signal from the motor system.  These 
strategies are at least 50 points better than the DeferAttend 
strategy used by Byrne and Anderson (2001).

4. Contrast predictions to data

Having used the predicted payoffs to discover a candidate 
for the best strategies given the limits imposed by the 
architecture we analysed the predicted RTs and error rates 
for each of the experiments.   The predicted RTs are 
illustrated in Figure 3.  They are substantially faster than 
the predictions made by Byrne and Anderson (2001) but 
slower than the fastest possible strategy (which was not the 
highest payoff strategy). In Figure 3, the data is represented 
by solid lines and the model’s predicted RTs at short-SOA 
(given the fit to long SOA) by dashed lines.  (Remember 
that the prediction is derived given the assumption that 
people adapt within the bounds set by the architecture.)  

In each experiment, the Byrne & Anderson models
consistently underperform—sometimes by substantial
amounts—the best strategy.
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Summary/Nuggets de Oro

1 Adaptation is bounded by the task environment and
architecture.

2 An architecural theory explains behavior, with no further
assumptions, if the optimal performance predicted by the
theory corresponds to the observed asymptotic bound.

3 Constraint satisfaction can be used to predict the
asymptotic bound on adaptation, formally deriving
the predictions of an architectural theory while
minimizing assumptions about strategy.

4 Significant theoretical and applied benefits may
accrue from this approach and its associated tools.
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Nuggets de Carbón

1 Efficiency. Some models take 2 seconds, some take 24
hours, some never return.

2 Interaction with task simulation. Presently, can’t be
done.

3 Difficulty formalizing learning constraints. Presently,
can’t be done (though we haven’t really tried).
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