
Aspects and Soar: A Behavior Development
Model

Jacob Crossman
jcrossman@soartech.com

Motivation: Why is Soar Useful?

� Soar Systems are often complex
• Often require multiple processes
• Are built of hundreds/thousands of complex conditions
• Often intended to solve hard/complex problems
• Often involve issues with quasi-realtime performance and reactivity
• Often have performance/memory issues (that might be resolvable, but take some

thinking and analysis)
� Because of this complexity I often ask the question: “What is Soar buying me?”

• Could I just write this same program in Java (or pick your favorite
language/framework/system)?

• This question assumes that these other systems are easier to use, more robust, and
have better documentation/training materials (which is true)

� General Answers:
• Soar allows variety of problem solving methods
• Soar is reactive to changes in the environment
• Soar has X (e.g. truth maintenance, impasses, etc)

� But what is (or are) the core development patterns that leverage the capabilities
of Soar and…

• What are the characteristics of the problems it solves and…
• What are the architectural features that lead to these capabilities?

What About Procedures?

� We know Soar gives us powerful pattern matching,
reactivity (via the RETE), and runtime choice mechanism
(via operators),…

� … but what about procedures?
� A core element of any behaving system (including a Soar

model) is its procedures
� We know that coding procedures is hard (or replace with

“tedious” or “error prone”) in Soar
• Primary Cause: production system model (there are no procedural

constructs – though operators and tricky production logic can
provide the function)

• Consider counting problem

� Is there a way to think about/model procedures that fits
better with Soar’s strengths?

Aspect Oriented Programming (AOP)

� New approach to problem decomposition and program
structure
• Developed at Xerox PARC by a team led by Gregor Kiczales

� Key Observation : There are common problems that are
impossible to encapsulate using OO techniques.
• Typical examples: logging, security, error handling, observer pattern

� These problems are referred to as cross cutting problems
because they cut across the standard problem
decomposition technique (i.e. the object infrastructure)

� Can we find ways to encapsulate the structure and logic
associated with crosscutting features? Yes – aspect
oriented programming

Key Elements

� Model of a program that defines nodes of execution
explicitly and formally (join point model)

� Identification of specific places to insert or change behavior
and data structures (pointcuts)
• Requires pattern matching (often regular expressions)
• Requires ability to introspect code (especially classes and

functions)

� Insertion of code and data structures at appropriate places
(advice)
• Advice: code to slip into the function execution stream
• + stuff for inserting additional data into objects

� Ability to encapsulate these features into modules
(aspects)

� Typically, aspects are integrated into the core object code
at compile time using an aspect weaver

Examples
� Consider the observer pattern for updating a screen when

a shape changes

� Many of the most common crosscutting features are
embedded in languages or the OS
• Memory management
• Task management
• Function call stack management

Simplified Aspect for Observer

� The aspect combines the pointcuts and advice (as well as some other
related elements) forming modular solutions to crosscutting concerns

J
o
in
 P
o
in
t

“Aha” Moment

� Pattern matching, adapting behavior, crosscutting
augmentation of process and data structure, ability to work
across functional units,…. HMMM

� … Sounds like Soar

� Except Soar programs do this all the time, at RUNTIME!

� Is this the basis of a programming pattern in Soar?

� Is this this a useful way to understand how to leverage
Soar’s unique capabilities?

Randy’s Observation

� For “expert behavior
models”
• SMEs often provide flow

charts of behavior
• However, these flow charts

are just a template for real
behavior

• Detailed analysis and actual
execution in the target
environment are required to
understand how these
behaviors vary from the
template.

Core Idea

� Can we think of Soar behavior models as having several core
algorithms (e.g. the “doctrinal behavior”) augmented with variations on
this behavior (possibly crosscutting) based on context?

� Can an aspect oriented approach tell us something about how this can
work in a consistent, robust manner?

Start

Step 1

Step 2

Step 3

End

Variation B

Start

Step 1

Step 2

End

Variation A

Variation B

Example: Tank Soar (Simplified)

� Core Algorithm Template (Attack, Wander, Run)

Behavior Insertion and Replacement

Start

Select Direction

Randomly and

Move

No Tank

TRUE

FALSE

Stop

Start

Select Toward

Tank and Move

Tank &

Healthy

FALSE

TRUE

Stop

Fire

Start

Select Direction

away from Tank

and Move

Tank &

Hurting

FALSE

TRUE

Stop

Turn On

Shields

Wander Attack Run

Select Evade

Direction if

Missile

Turn after Move

Behavior Variations

Full Crosscutting and Tagging

Example from HLSR (within operator)

� In OO, this would be 3 methods, plus logic embedded in a separate
context to handle 4b

� Here, we’ve actually reduced the need for multiple algorithms by
packaging variations (one is crosscutting)

Key Elements of AOP Mapped to Soar
(enabling architecture components)

� Join Point Model: operators
• Internal – within an operator we have the proposal and apply phases
• External – the operator selection and preference process
• NOTE: Even the sometimes maligned “o-support via operators” means that

a developer can depend on permanent actions always using the same
mechanism (when theory is followed).

� Pointcuts: symbolic patterns
• Provides a more general and robust way (v. current AOP approaches) to

identifying appropriate point-cuts

� Advice: operators and productions
• Productions: just create productions that fire over the appropriate set of

activities
• Operators: requires consistent use of preferences (e.g. “<” could give you

“before advice”)

� Aspects: requires an HLL (but can be approximated using files)
� Aspect Weaver: The Soar decision cycle and preference mechanisms

– but this happens all at runtime

Caveats (Coal)

� It is possible to implement powerful runtime aspect oriented
behavior using Soar (and this is done sometimes), but…

� There is no support for modularity in Soar: best use the file
system to maximum effect

� Requires consistent use of Soar features/capabilities such
as operators and preferences

� Consistent implementations would rely heavily on
convention to keep the model maintainable and robust

� Solution: Implementation of this capability in an HLL
• HLSR is implementing some of these features this year

Recommendation (Nuggets)
� Soar is especially well suited to implementing aspect oriented behavior,

particularly
• contextual behavior insertion
• crosscutting behavior

� When building a Soar model it is worthwhile to
• Analyze the problem to determine if it requires significant contextual

variation and/or contains crosscutting elements
• If not, can you write it as a standard procedural algorithm? If you can, do it that

way (maybe tying results into Soar)
• If so, consider decomposing the algorithm along lines of core algorithms,

variations, and crosscutting behavior as shown

� This is not necessarily the only pattern for which Soar is well suited, but
it appears to be a model for which Soar provides significant advantages
over traditional development approaches

� Indicating problem/solution characteristics:
• You are building a model with explicitly represented knowledge (i.e. you are

not building a general purpose reasoner)
• Your domain is the real world or a complex simulated environments
• Your solution is required to interact in near realtime to changes

References

� AOP in General: http://aosd.net/
� AspectJ: http://www.eclipse.org/aspectj/
� Google Video on AOP:

http://video.google.com/videoplay?docid=85669233113154
12414&q=Kiczales

� Kiczales: http://www.cs.ubc.ca/~gregor/

