e
&< SoarTechnoloay

Thinking inside the box.

Aspects and Soar: A Behavior Development
Model

Jacob Crossman
jerossman@soartech.com

Motivation: Why is Soar Useful?

Soar Systems are often complex
Often require multiple processes
Are built of hundreds/thousands of complex conditions
Often intended to solve hard/complex problems
Often involve issues with quasi-realtime performance and reactivity
Often have performance/memory issues (that might be resolvable, but take some
thinking and analysis)
Because of this complexity | often ask the question: “What is Soar buying me?”

Could I just write this same program in Java (or pick your favorite
language/framework/system)?

This question assumes that these other systems are easier to use, more robust, and
have better documentation/training materials (which is true)

General Answers:
Soar allows variety of problem solving methods
Soar is reactive to changes in the environment
Soar has X (e.g. truth maintenance, impasses, etc)

But what is (or are) the core development patterns that leverage the capabilities
of Soar and...

What are the characteristics of the problems it solves and...
What are the architectural features that lead to these capabilities?

y =
A2 Soar Jechnology

What About Procedures?

We know Soar gives us powerful pattern matching,

reactivity (via the RETE), and runtime choice mechanism
(via operators), ...

... but what about procedures?

A core element of any behaving system (including a Soar
model) is its procedures

We know that coding procedures is hard (or replace with
“tedious” or “error prone”) in Soar

Primary Cause: production system model (there are no procedural
constructs — though operators and tricky production logic can
provide the function)

Consider counting problem

Is there a way to think about/model procedures that fits
better with Soar’s strengths?

y =
A2 Soar Jechnology

Aspect Oriented Programming (AOP)

New approach to problem decomposition and program
structure
Developed at Xerox PARC by a team led by Gregor Kiczales

Key Observation : There are common problems that are
Impossible to encapsulate using OO techniques.

Typical examples: logging, security, error handling, observer pattern
These problems are referred to as cross cutting problems

because they cut across the standard problem
decomposition technique (i.e. the object infrastructure)

Can we find ways to encapsulate the structure and logic
associated with crosscutting features? Yes — aspect
oriented programming

y =
A2 Soar Jechnology

|
Key Elements

Model of a program that defines nodes of execution
explicitly and formally (join point model)

Identification of specific places to insert or change behavior
and data structures (pointcuts)
Requires pattern matching (often regular expressions)
Requires ability to introspect code (especially classes and
functions)
Insertion of code and data structures at appropriate places
(advice)
Advice: code to slip into the function execution stream
+ stuff for inserting additional data into objects

Ability to encapsulate these features into modules
(aspects)

Typically, aspects are integrated into the core object code

at compile time using an aspect weaver N
22 Soar Jechnology

Examples

Consider the observer pattern for updating a screen when
a shape changes

Basic Shape
_ public SetPos(..) {

m_listeners: veci tor . . .
T Do Change // Do position setting stuff
Fregont X = posx

Y = PoOsy

v // Update listeners
Derived Shapes Nolify Li FireEvent (SHAPE UPDATED)
otify Listeners —_—

SetPos }
SetSize

Many of the most common crosscutting features are
embedded in languages or the OS

Memory management

Task management

Function call stack management

y =
A2 Soar Jechnology

Simplified Aspect for Observer

Basic Shape
(s)
m_listeners: vector Aspect-MethOds
AddListener
Rem(;veListener (and Data)
- FireEvent
=
o
c Do Change
(e,
- "
l Point Rectangle Circle
SetPos SetPos SetPos
SetSize SetRadius
End o -
PointCut
Advice
after () returning: shapeModify ({

}

// Update listeners
FireEvent (SHAPE_UPDATED)

The aspect combines the pointcuts and advice (as well as some other
related elements) forming modular solutions to crosscutting concerns

y =
A2 Soar Technology

IS
“Aha” Moment

Pattern matching, adapting behavior, crosscutting
augmentation of process and data structure, ability to work
across functional units,.... HMMM

... Sounds like Soar
Except Soar programs do this all the time, at RUNTIME!
Is this the basis of a programming pattern in Soar?

Is this this a useful way to understand how to leverage
Soar’s unique capabilities?

y =
A2 Soar Jechnology

Randy’s Observation

For “expert behavior
. I I I
models (oo] [rooreom |
SMEs often provide flow e
charts of behavior i l S|
However, these flow charts =)
are just a template for real | e
behavior sl e o
Detailed analysis and actual e
execution in the target ——
environment are required to —————
understand how these D"—E’:
behaviors vary from the & &5
template. |—~C
)

4%, SgarTechnology

Core Ildea

Can we think of Soar behavior models as having several core
algorithms (e.g. the “doctrinal behavior”) augmented with variations on
this behavior (possibly crosscutting) based on context?

Can an aspect oriented approach tell us something about how this can
work in a consistent, robust manner?

4[Variation A] »

Step 1

Step 1
Variation B }\
Step 2 ¢
‘ Step 2
l S
Step 3 W Variation B l

>
45, Soar Technology

Example: Tank Soar (Simplified)

Wander Attack Run

TRUE

Select Direction Select Direction
Select Toward
— Randomly and away from Tank
Tank and Move
Move _ and Move
B Fire B Turn On
Shields

Core Algorithm Template (Attack, Wander, Run)

y =
A2 Soar Jechnology

Behavior Insertion and Replacement

Wander Attack Run

FALSE
—~ (sp)

TRUE

Select Direction Select Direction
elect Toward
Randomly and away from Tank
ank and Move
Move and Move

Fire urn On
Shields

| //]

/ Behavior Variations

Select Evade
Direction if Turn after Move

S e
Missile 5 Soar Technloy

Full Crosscutting and Tagging

Wander

Attack

Run

FALSE @

TRUE

Select Direction
Randomly and
Move

I

N

™

Select Toward
Tank and Moye

Select Direction
away from Tank
and Move

~

y

e\

urn On
Shields

;\\\ i~

Tag/Data

P
A

N
Health
osition
)

V4

Behavior Variations

ﬂf Sense Health,

k Record It

&< Soar Technology

Thinking inside the box.

Example from HLSR (within operator)

“New” Operator

General For Facts For Goals For Transforms

1. Create object in
temp location

2. Copy parameters 2b. If supergoal 2b. Set execution

(if exist) exists, copy flags

3. Mark object as supergoal

created
4. Move to object 4. Move to goal pool 4. Move to transform
pool pool

For Creating FROM Transforms (call v. execute)

4b Copy to transform local variables

In OO, this would be 3 methods, plus logic embedded in a separate
context to handle 4b

Here, we’ve actually reduced the need for multiple algorithms by

packaging variations (one is crosscutting) N
A2 Sgar Technology

|
Key Elements of AOP Mapped to Soar

(enabling architecture components)

Join Point Model: operators
Internal — within an operator we have the proposal and apply phases
External — the operator selection and preference process
NOTE: Even the sometimes maligned “o-support via operators” means that
a developer can depend on permanent actions always using the same
mechanism (when theory is followed).

Pointcuts: symbolic patterns
Provides a more general and robust way (v. current AOP approaches) to
identifying appropriate point-cuts

Advice: operators and productions
Productions: just create productions that fire over the appropriate set of
activities
Operators: requires consistent use of preferences (e.g. “<” could give you
“before advice”)

Aspects: requires an HLL (but can be approximated using files)

Aspect Weaver: The Soar decision cycle and preference mechanisms
— but this happens all at runtime

y =
A2 Soar Technology

Caveats (Coal)

It is possible to iImplement powerful runtime aspect oriented
behavior using Soar (and this is done sometimes), but...

There is no support for modularity in Soar: best use the file
system to maximum effect

Requires consistent use of Soar features/capabilities such
as operators and preferences

Consistent implementations would rely heavily on
convention to keep the model maintainable and robust

Solution: Implementation of this capability in an HLL
HLSR is implementing some of these features this year

y =
A2 Soar Jechnology

Recommendation (Nuggets)

Soar is especially well suited to implementing aspect oriented behavior,
particularly

contextual behavior insertion
crosscutting behavior

When building a Soar model it is worthwhile to

Analyze the problem to determine if it requires significant contextual
variation and/or contains crosscutting elements

If not, can you write it as a standard procedural algorithm? If you can, do it that
way (maybe tying results into Soar)

If so, consider decomposing the algorithm along lines of core algorithms,
variations, and crosscutting behavior as shown

This is not necessarily the only pattern for which Soar is well suited, but
It appears to be a model for which Soar provides significant advantages
over traditional development approaches

Indicating problem/solution characteristics:

You are building a model with explicitly represented knowledge (i.e. you are
not building a general purpose reasoner)

Your domain is the real world or a complex simulated environments

Your solution is required to interact in near realtime to changes:.
A2 Soar ectnlooy

References

AOP in General:
AspectJ:
Google Video on AOP:

Kiczales:

y =
A2 Soar Jechnology

