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Introduction

� Historically, there have been two major categories of goal 
management processes in Soar programs:
• The built-in sub-states (impasse driven subgoaling) (e.g. the 

“University of Michigan Approach”)
• Declarative goal representations on the top state (e.g. “Radical 

Randy”)

� Soar Technology has developed a library of code for the 
declarative goal approach we call the “New Goal System 
(NGS)”

� Motivation for this talk: we wanted to know how the NGS 
will scale as problems become more complex and require 
more goals
• This is mainly a  performance evaluation
• This is NOT an evaluation of usability or  multi-tasking, etc



The Problem: The Towers of Hanoi Algorithm

� A recursive algorithm which optimally solves Towers of 
Hanoi for any number of disks
• Use means end analysis
• Move-stack is decomposed into three actions, move smaller  stack 

to free peg, move disk, move smaller stack from free peg

� Start state is all disks on one tower
� Final state is all disks on goal tower
� Requires 2n-1 disk moves
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The Experiment configurations

Operators 
Create 
Goals

Uses 
Named 

Conditions

Uses 
Transforms

Shorthand

NGS-Light (i-support)

(Radical Randy)
No No No 0-0-0

NGS-Conditions (i-support) No Yes No 0-1-0

NGS-Light (w. operators) Yes No No 1-0-0
NGS-Conditions (w. 
operators)

Yes Yes No 1-1-0

NGS-Full (uses transforms 
w. operators)

Yes Yes Yes 1-1-1

UM – UOM Yes No No UOM



Decision Cycles
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CPU time, Timeout=0
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WM max
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CPU/Decision Cycle (DC)
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But why does the CPU/Decision Cycle 
seem to correlate (mostly) to overall 

execution time????



Architecture Factors

� Can we find the core factors of the architecture impacting 
the performance?

� Look at:
• WM Size v. CPU/DC
• WM Changes v. CPU/DC
• Memories v. CPU/DC
• Activations (RETE alpha/beta nodes) v. CPU/DC



Working Memory Max v. CPU/DC
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Working Memory Changes/DC v. CPU/DC
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Average Memories v. CPU/DC
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Activations v. CPU/DC
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Time Series Look (Micro-Details)
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Conclusions

� Comparison of Approaches (CPU)
• NGS lite (Radical Randy) can be as fast or faster than UM approach
• Adding significant numbers of named (declarative) conditions is a 

significant constant offset to CPU performance and adds significantly 
to memory size

• Not sure goal approach is overriding factor in performance

� Leave named conditions for cases when you need the 
declarative aspects (e.g. communication and introspection)

� Rules of thumb for goals
• Use i-supported goals if you can
• Use :o-support w. achievement condition for faster o-support
• Keep timeouts for goal deletion very short (0 if possible)



Conclusions on Architecture-Level Factors

� Rule of Thumb :  Soar systems scale with changes to working memory 
(ONLY PARTIALLY CORRECT)

� Corrected Rule : Soar systems scale with changes to RETE 
(activations) which are triggered by changes to WM but can be 
significantly larger than the WM change itself

� We already know that multi-value attributes are expensive, but lots of 
LHS conditions can also be expensive
• These are actually related (multi-valued attributes impacts left and right 

activations and their cost)
� Suggestions :

• Make operator applications simple (do work at/before proposal time)
• Make substate construction simple (keep non-changing information on the 

top state)
• In general, write smaller productions
• Order your production logic so stuff most likely to change is at the bottom of 

the production LHS
� Side Note: Use variabilized attributes for multi-valued attributes

• Create as <set> ^<attr> <val> +) -- <attr> will be unique ID
• Test as (<set> ^<attr> <val>) -- <attr> will bind to ID



Suggested Further Analysis/Work

� What impact are justifications (and other aspects of the 
substate process) having?

� Details:
• Can we say more about exactly how to organize LHS conditions?
• How much of an impact does WM Size itself really have (and under

what conditions) 
• Could we write preprocessors or runtime analysis tool to enable 

automatic ordering of LHS conditions?

� Suggestion:
• Include Memories Changes to the available stats for productions 

(so developers can see which productions are expensive) 



Backup



WM changes
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Production Firings
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WM changes per DC
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CPU time, Timeout=0
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