
An Analysis of the Performance
of the NGS (New Goal System)

Jacob Crossman
jcrossman@soartech.com

Soar Workshop 2007

Work by: Thom Bartold, Mike Quist
Support: Glenn Taylor, Dave Ray

Introduction

� Historically, there have been two major categories of goal
management processes in Soar programs:
• The built-in sub-states (impasse driven subgoaling) (e.g. the

“University of Michigan Approach”)
• Declarative goal representations on the top state (e.g. “Radical

Randy”)

� Soar Technology has developed a library of code for the
declarative goal approach we call the “New Goal System
(NGS)”

� Motivation for this talk: we wanted to know how the NGS
will scale as problems become more complex and require
more goals
• This is mainly a performance evaluation
• This is NOT an evaluation of usability or multi-tasking, etc

The Problem: The Towers of Hanoi Algorithm

� A recursive algorithm which optimally solves Towers of
Hanoi for any number of disks
• Use means end analysis
• Move-stack is decomposed into three actions, move smaller stack

to free peg, move disk, move smaller stack from free peg

� Start state is all disks on one tower
� Final state is all disks on goal tower
� Requires 2n-1 disk moves

31

2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5 6 7 8 9 10 11 12

R
eq

ui
re

d
M

ov
es

Disks

The Experiment configurations

Operators
Create
Goals

Uses
Named

Conditions

Uses
Transforms

Shorthand

NGS-Light (i-support)

(Radical Randy)
No No No 0-0-0

NGS-Conditions (i-support) No Yes No 0-1-0

NGS-Light (w. operators) Yes No No 1-0-0
NGS-Conditions (w.
operators)

Yes Yes No 1-1-0

NGS-Full (uses transforms
w. operators)

Yes Yes Yes 1-1-1

UM – UOM Yes No No UOM

Decision Cycles

0

2000

4000

6000

8000

10000

12000

4 5 6 7 8 9 10 11 12 13

0-0-0-DC

0-1-0-DC

1-0-0-DC

1-1-0-DC

1-1-1-DC

UOM-DC

Identical to
problem
complexity
curve

Op-Gen
Goals

Op-Gen
Goals
(extra ops)

D
ec

is
io

n
C

yc
le

s

Disks

I-supported
goals

CPU time, Timeout=0

0

5

10

15

20

25

30

35

40

45

50

4 5 6 7 8 9 10 11 12 13

0-0-0-CPU

0-1-0-CPU

1-0-0-CPU

1-1-0-CPU

1-1-1-CPU

UOM-CPU

Disks

T
ot

al
 C

P
U

T

im
e

Basically follows the trend in decisions
(more decisions, more time)

WM max

0

200

400

600

800

1000

1200

4 5 6 7 8 9 10 11 12 13

0-0-0-WM-MAX

0-1-0-WM-MAX

1-0-0-WM-MAX

1-1-0-WM-MAX

1-1-1-WM-MAX

UOM-WM-MAX

I-supported
goals + UM

Named
Conditions

Disks

W
M

 M
ax

CPU/Decision Cycle (DC)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

4 5 6 7 8 9 10 11 12 13

0-0-0-CPU/DC

0-1-0-CPU/DC

1-0-0-CPU/DC

1-1-0-CPU/DC

1-1-1-CPU/DC

UOM-CPU/DC

Disks

C
P

U
 T

im
e

(s
)

But why does the CPU/Decision Cycle
seem to correlate (mostly) to overall

execution time????

Architecture Factors

� Can we find the core factors of the architecture impacting
the performance?

� Look at:
• WM Size v. CPU/DC
• WM Changes v. CPU/DC
• Memories v. CPU/DC
• Activations (RETE alpha/beta nodes) v. CPU/DC

Working Memory Max v. CPU/DC

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 200 400 600 800 1000 1200

0-0-0-CPU/DC

0-1-0-CPU/DC

1-0-0-CPU/DC

1-1-0-CPU/DC

1-1-1-CPU/DC

UOM-CPU/DC

WM-MAX

Maximum working memory size seems
correlated, but other factors are

influencing performance (see left most
plots in particular)

Working Memory Changes/DC v. CPU/DC

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 20 40 60 80 100 120 140 160

0-0-0-CPU/DC

0-1-0-CPU/DC

1-0-0-CPU/DC

1-1-0-CPU/DC

1-1-1-CPU/DC

UOM-CPU/DC

WM Changes/DC

WM Changes/DC (average)
are constant, so aren’t really a

factor at all

Average Memories v. CPU/DC

0.1

1

10

1000 10000 100000

AvgMemories

C
P
U
P
e
r
D
C
 (
m
s
e
c
)

NGS-0-0-0

NGS-0-1-0

NGS-1-0-0

NGS-1-1-0

NGS-1-1-1

UOM

Memories correlates
reasonably well with

CPU time

Activations v. CPU/DC

1000

10000

100000

0.1 1 10

CPUPerDC (msec)

T
o
ta
lA
c
ti
v
a
ti
o
n
s
P
e
r
D
C

NGS-0-0-0

NGS-0-1-0

NGS-1-0-0

NGS-1-1-0

NGS-1-1-1

UOM

Why? Is this
justifications or the
impasse process?

Activations correlates
very well with CPU

time Why? Detail of left v.
right activations? Or

Memory Size?

Time Series Look (Micro-Details)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10 11

Elaboration Cycles

Memories

AbsDeltaMemories

DeltaCPU (x 15000)

DeltaActivations

Conclusions

� Comparison of Approaches (CPU)
• NGS lite (Radical Randy) can be as fast or faster than UM approach
• Adding significant numbers of named (declarative) conditions is a

significant constant offset to CPU performance and adds significantly
to memory size

• Not sure goal approach is overriding factor in performance

� Leave named conditions for cases when you need the
declarative aspects (e.g. communication and introspection)

� Rules of thumb for goals
• Use i-supported goals if you can
• Use :o-support w. achievement condition for faster o-support
• Keep timeouts for goal deletion very short (0 if possible)

Conclusions on Architecture-Level Factors

� Rule of Thumb : Soar systems scale with changes to working memory
(ONLY PARTIALLY CORRECT)

� Corrected Rule : Soar systems scale with changes to RETE
(activations) which are triggered by changes to WM but can be
significantly larger than the WM change itself

� We already know that multi-value attributes are expensive, but lots of
LHS conditions can also be expensive
• These are actually related (multi-valued attributes impacts left and right

activations and their cost)
� Suggestions :

• Make operator applications simple (do work at/before proposal time)
• Make substate construction simple (keep non-changing information on the

top state)
• In general, write smaller productions
• Order your production logic so stuff most likely to change is at the bottom of

the production LHS
� Side Note: Use variabilized attributes for multi-valued attributes

• Create as <set> ^<attr> <val> +) -- <attr> will be unique ID
• Test as (<set> ^<attr> <val>) -- <attr> will bind to ID

Suggested Further Analysis/Work

� What impact are justifications (and other aspects of the
substate process) having?

� Details:
• Can we say more about exactly how to organize LHS conditions?
• How much of an impact does WM Size itself really have (and under

what conditions)
• Could we write preprocessors or runtime analysis tool to enable

automatic ordering of LHS conditions?

� Suggestion:
• Include Memories Changes to the available stats for productions

(so developers can see which productions are expensive)

Backup

WM changes

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

4 5 6 7 8 9 10 11 12 13

0-0-0-WME

0-1-0-WME

1-0-0-WME

1-1-0-WME

1-1-1-WME

UOM-WME

Disks

W
M

C

ha
ng

es

Production Firings

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

4 5 6 7 8 9 10 11 12 13

0-0-0-PF

0-1-0-PF

1-0-0-PF

1-1-0-PF

1-1-1-PF

UOM-PF

Disks

P
ro

du
ct

io
n

F
iri

ng
s

WM changes per DC

0

20

40

60

80

100

120

140

160

4 5 6 7 8 9 10 11 12 13

0-0-0-WME/DC

0-1-0-WME/DC

1-0-0-WME/DC

1-1-0-WME/DC

1-1-1-WME/DC

UOM-WME/DC

Disks

W
M

C

ha
ng

es

pe
r

D
C

CPU time, Timeout=0

0

5

10

15

20

25

30

35

40

45

50

4 5 6 7 8 9 10 11 12 13

0-0-0-CPU

0-1-0-CPU

1-0-0-CPU

1-1-0-CPU

1-1-1-CPU

UOM-CPU

Disks

T
ot

al
 C

P
U

T

im
e

