e
&< SoarTechnoloay

Thinking inside the box.

An Analysis of the Performance
of the NGS (New Goal System)

Jacob Crossman
Soar Workshop 2007

Work by: Thom Bartold, Mike Quist
Support: Glenn Taylor, Dave Ray

Introduction

Historically, there have been two major categories of goal
management processes in Soar programs:

The built-in sub-states (impasse driven subgoaling) (e.g. the
“University of Michigan Approach”)

Declarative goal representations on the top state (e.g. “Radical
Randy”)
Soar Technology has developed a library of code for the
declarative goal approach we call the “New Goal System
(NGS)”

Motivation for this talk: we wanted to know how the NGS
will scale as problems become more complex and require
more goals

This is mainly a performance evaluation

This is NOT an evaluation of usability or multi-tasking, etc

y =
A2 Soar Jechnology

The Problem: The Towers of Hanoi Algorithm

A recursive algorithm which optimally solves Towers of
Hanol for any number of disks
Use means end analysis

Move-stack is decomposed into three actions, move smaller stack
to free peg, move disk, move smaller stack from free peg

Start state is all disks on one tower
Final state Is all disks on goal tower
Requires 2"-1 disk moves

L1
T 2 —

Required Moves
]

y =
A2 Soar Technology

The Experiment configurations

Operators Uses Uses

Create Named Transforms Shorthand

Goals Conditions
NGS-Light (i-support) No No No 0-0-0 —o—
(Radical Randy)
NGS-Conditions (i-support) No Yes No 0-1-0 -
NGS-Light (w. operators) Yes NO NO 1-0-0
NGS-Conditions (w. Yes Yes NO 1-1-0
operators)
NGS-Full (uses transforms Yes Yes Yes 1-1-1 ¥
w. operators)
UM - UOM Yes No No UoM —@&—

y =
A2 Soar Jechnology

Decision Cycles

12000
10000
Op-Gen
Goals
(extra ops)
8000 -
- —e—0-0-0-DC
S W -
5 9 0-1-0-DC
= O
1-0-0-DC
o 3 | 600
2 1-1-0-DC
—x—1-1-1-DC
—e— UOM-DC
4000
Identical to
problem
2000 - complexity
curve
I-supported
goals
0 T T T 1
4 5 6 7 8 9 10 11 12 13
. =
Disks 4, Soar Technology

Thinking inside the box.

CPU time, Timeout=0

Total CPU

Time

50 -

45 -

40

35

Basically follows the trend in decisions

30

(more decisions, more time)

25

20

15

10

s

11 12 13

—e— UOM-CPU

—e— 0-0-0-CPU
—=— 0-1-0-CPU
1-0-0-CPU
1-1-0-CPU
——1-1-1-CPU

Disks

=
< SoarTechno

0gy

Thinking inside the box.

WM max

1200 -
Named
Conditions
1000 s
800 -
P
©
=
% 600 -
400
I-supported
200 - goals + UM
0 T T T T T T T T 1
4 5 6 7 8 9 10 11 12 13

—e— 0-0-0-WM-MAX
—8— 0-1-0-WM-MAX
1-0-0-WM-MAX
1-1-0-WM-MAX
—*— 1-1-1-WM-MAX
—e— UOM-WM-MAX

Disks

&% SoarTechnology

Thinking inside the box.

CPU/Decision Cycle (DC)

CPU Time (s)

0.0045

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

ut why does the CPU/Decision Cycle

M Fipay [t Py I |

seem to correlate (mostly) to overall
execution time???7?

~,
T

—e—0-0-0-CPU/DC
—=—0-1-0-CPU/DC
1-0-0-CPU/DC
1-1-0-CPU/DC
——1-1-1-CPU/DC
—e— UOM-CPU/DC

Disks

A‘ Soar Technology

Thinking inside the box.

Architecture Factors

Can we find the core factors of the architecture impacting
the performance?

Look at:
WM Size v. CPU/DC
WM Changes v. CPU/DC
Memories v. CPU/DC
Activations (RETE alpha/beta nodes) v. CPU/DC

y =
A2 Soar Jechnology

Working Memory Max v. CPU/DC

0.0045
0.004 Maximum working memaory size seems
correlated, but other factors are
0.0035 influencing performance (see left most
plots in particular)
0.003 A
—e— 0-0-0-CPU/DC
0.0025 - —=—0-1-0-CPU/DC
1-0-0-CPU/DC
1-1-0-CPU/DC

0.002 —%—1-1-1-CPU/DC
/-/).// —e— UOM-CPUIDC
0.0015 /
0.001 -+ //

0.0005 -

0 200 400 600 800 1000 1200

WM-MAX &% Soar Technology

Thinking inside the box.

Working Memory Changes/DC v. CPU/DC

0.0045
0.004 WM Changes/DC (average)
are constant, so aren’t really a
0.0035 factor-at all
0.003
—e— 0-0-0-CPU/DC
0.0025 —=—0-1-0-CPU/DC
1-0-0-CPU/DC
" 1-1-0-CPU/DC
0002 —x—1-1-1-CPU/DC
—e— UOM-CPU/DC
[]
0.0015
[] ;
0.001
[y d
I § :
0.0005 <
b3
0 T T T T T T T 1
0 20 40 60 80 100 120 140 160

WM Changes/DC 2 Soar ety

Average Memories v. CPU/DC

10 1
Memories correlates
reasonably well with
CPU time
M
. —e— NGS-0-0-0
g —=— NGS-0-1-0
(@) NGS-1-0-0
Q |
- NGS-1-1-0
8 100000 | . NGs-1-1-1
> —e— UOM
(@)
0.1 -

AvgMemories

=
A2 Soar Jechnology

Activations v. CPU/DC

100000 -
Activations correlates
very well with CPU
9 HIC Why? Detail of left v.
= X . . .
g right activations? Or —e—NGS-0-0-0
g Memory Size? —=—NGS-0-1-0
2 NGS-1-0-0
g 10000 o NGS-1-1-0
E’ —%—NGS-1-1-1
© f'”"‘t.‘ UoM
wd
(=] .,/_k‘.
=
™~ Why? Is this
justifications or the
impasse process?
1000 - ‘ |
0.1 1 10
CPUPerDC (msec)

=
A2 Soar Jechnology

Time Series Look (Micro-Detalls)

50000 T

45000 A

40000

35000

30000
—e— Memories
| —8— AbsDeltaMemories
25000 DeltaCPU (x 15000)
DeltaActivations
20000 A
15000 \

10000 5/ | / \\ \\
5000 { o o j \¢ .
\

0 +— A A P A r—
1 2 3 4 5 6 7 8 9 10 11
Elaboration Cycles

ology

Thinking inside the box.

e
Conclusions

Comparison of Approaches (CPU)
NGS lite (Radical Randy) can be as fast or faster than UM approach

Adding significant numbers of named (declarative) conditions is a
significant constant offset to CPU performance and adds significantly
to memory size

Not sure goal approach is overriding factor in performance

Leave named conditions for cases when you need the
declarative aspects (e.g. communication and introspection)

Rules of thumb for goals

Use i-supported goals if you can
Use :0-support w. achievement condition for faster o-support
Keep timeouts for goal deletion very short (O if possible)

y =
A2 Soar Jechnology

Conclusions on Architecture-Level Factors

Rule of Thumb : Soar systems scale with changes to working memory
(ONLY PARTIALLY CORRECT)
Corrected Rule : Soar systems scale with changes to RETE
(activations) which are triggered by changes to WM but can be
significantly larger than the WM change itself
We already know that multi-value attributes are expensive, but lots of
LHS conditions can also be expensive
These are actually related (multi-valued attributes impacts left and right
activations and their cost)
Suggestions :
Make operator applications simple (do work at/before proposal time)

Make substate construction simple (keep non-changing information on the
top state)

In general, write smaller productions

Order your production logic so stuff most likely to change is at the bottom of
the production LHS

Side Note: Use variabilized attributes for multi-valued attributes
Create as <set> "<attr> <val> +) -- <attr> will be unique 1D
Test as (<set> "<attr> <val>) -- <attr> will bind to ID

y =
A2 Soar Jechnology

Suggested Further Analysis/Work

What impact are justifications (and other aspects of the
substate process) having?

Detaills:
Can we say more about exactly how to organize LHS conditions?

How much of an impact does WM Size itself really have (and under
what conditions)

Could we write preprocessors or runtime analysis tool to enable
automatic ordering of LHS conditions?

Suggestion:

Include Memories Changes to the available stats for productions
(so developers can see which productions are expensive)

y =
A2 Soar Jechnology

Backup

y =
A2 Soar Jechnology

WM changes

1000000 -

900000 - /
800000

700000
$ 600000 / +—0-0-0-WME
S g) —= 0-1-0-WME
= 1-0-0-WME
= 500000
O 1-1-0-WME
400000 —%—1-1-1-WME
| —e— UOM-WME
300000
200000

100000 / / "

Disks &% SoarTechnology

Thinking inside the box.

Production Firings

200000 -
180000 - /
160000

140000 / /
120000 +—0-0-0-PF

c

S n

o g’ —= 0-1-0-PF

D .= 1-0-0-PF

T .= 100000 -

O L 1-1-0-PF

o —%—1-1-1-PF
80000 1 —e— UOM-PF

60000 - /
40000 /

20000

13

Disks &% SoarTechnology

Thinking inside the box.

WM changes per DC

160 -
140 - ._/I—/——'——'—' = - -
120
———K— —% % ¥ ¥ * X
$ Q 100 —e— 0-0-0-WME/DC
2 CCD A —s—0-1-0-WME/DC
; c = 1-0-0-WME/DC
c D 80 A 6 o D N - .
Q o = 1-1-0-WME/DC
——1-1-1-WME/DC
60 —e— UOM-WME/DC
40
20 — ® e o o ° o o
O T T T T T T T T 1
4 5 6 7 8 9 10 11 12 13
. y
Disks 4%, Soar Technology

Thinking inside the box.

CPU time, Timeout=0

E —+—0-0-0-CPU
O o —=0-1-0-CPU
s E 1-0-0-CPU
5 . 11-0-CPU
(o —%—1-1-1-CPU

—e— UOM-CPU

Disks &% Soar Technology

inking inside the box.

