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Introduction

Historically, there have been two major categories of goal
management processes in Soar programs:

The built-in sub-states (impasse driven subgoaling) (e.g. the
“University of Michigan Approach”)

Declarative goal representations on the top state (e.g. “Radical
Randy”)
Soar Technology has developed a library of code for the
declarative goal approach we call the “New Goal System
(NGS)”

Motivation for this talk: we wanted to know how the NGS
will scale as problems become more complex and require
more goals

This is mainly a performance evaluation

This is NOT an evaluation of usability or multi-tasking, etc
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The Problem: The Towers of Hanoi Algorithm

A recursive algorithm which optimally solves Towers of
Hanol for any number of disks
Use means end analysis

Move-stack is decomposed into three actions, move smaller stack
to free peg, move disk, move smaller stack from free peg

Start state is all disks on one tower
Final state Is all disks on goal tower
Requires 2"-1 disk moves
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The Experiment configurations

Operators Uses Uses

Create Named Transforms Shorthand

Goals Conditions
NGS-Light (i-support) No No No 0-0-0 —o—
(Radical Randy)
NGS-Conditions (i-support) No Yes No 0-1-0 -
NGS-Light (w. operators) Yes NO NO 1-0-0
NGS-Conditions (w. Yes Yes NO 1-1-0
operators)
NGS-Full (uses transforms Yes Yes Yes 1-1-1 ¥
w. operators)
UM - UOM Yes No No UoM —@&—
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Decision Cycles
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CPU time, Timeout=0
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WM max
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CPU/Decision Cycle (DC)
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ut why does the CPU/Decision Cycle
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seem to correlate (mostly) to overall
execution time???7?
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Architecture Factors

Can we find the core factors of the architecture impacting
the performance?

Look at:
WM Size v. CPU/DC
WM Changes v. CPU/DC
Memories v. CPU/DC
Activations (RETE alpha/beta nodes) v. CPU/DC
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Working Memory Max v. CPU/DC
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Working Memory Changes/DC v. CPU/DC
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Average Memories v. CPU/DC
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Activations v. CPU/DC
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Time Series Look (Micro-Detalls)
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e
Conclusions

Comparison of Approaches (CPU)
NGS lite (Radical Randy) can be as fast or faster than UM approach

Adding significant numbers of named (declarative) conditions is a
significant constant offset to CPU performance and adds significantly
to memory size

Not sure goal approach is overriding factor in performance

Leave named conditions for cases when you need the
declarative aspects (e.g. communication and introspection)

Rules of thumb for goals

Use i-supported goals if you can
Use :0-support w. achievement condition for faster o-support
Keep timeouts for goal deletion very short (O if possible)
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Conclusions on Architecture-Level Factors

Rule of Thumb : Soar systems scale with changes to working memory
(ONLY PARTIALLY CORRECT)
Corrected Rule : Soar systems scale with changes to RETE
(activations) which are triggered by changes to WM but can be
significantly larger than the WM change itself
We already know that multi-value attributes are expensive, but lots of
LHS conditions can also be expensive
These are actually related (multi-valued attributes impacts left and right
activations and their cost)
Suggestions :
Make operator applications simple (do work at/before proposal time)

Make substate construction simple (keep non-changing information on the
top state)

In general, write smaller productions

Order your production logic so stuff most likely to change is at the bottom of
the production LHS

Side Note: Use variabilized attributes for multi-valued attributes
Create as <set> "<attr> <val> +) -- <attr> will be unique 1D
Test as (<set> "<attr> <val>) -- <attr> will bind to ID
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Suggested Further Analysis/Work

What impact are justifications (and other aspects of the
substate process) having?

Detaills:
Can we say more about exactly how to organize LHS conditions?

How much of an impact does WM Size itself really have (and under
what conditions)

Could we write preprocessors or runtime analysis tool to enable
automatic ordering of LHS conditions?

Suggestion:

Include Memories Changes to the available stats for productions
(so developers can see which productions are expensive)
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Backup
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WM changes
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Production Firings
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WM changes per DC
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CPU time, Timeout=0
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