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Storm Architecture Research Plan

m Long-term goal:

Create an architecture with brain-based
algorithms that model brain structure/function

m Short-term goals:
Debug/test framework

Explore effects of various architectural
commitments

Iteratively develop complex architectures
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Iteratively More Complex Tasks

m Begin with a simple task initially

Requires learning selection knowledge for:

= an external (motor) action
= an internal (retrieval) action

m Each successive task will require a slightly
more complex architecture

m As we go, experiment with the effects of
various architectural commitments
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Task #1 — Secret Message Task

m  Goal: Open the box identified by the
message inside box M

m Episodic Domain
m Discrete state space

M
) = sta :
' @ m Deterministic Actions

[ | Senses:
Current location <x,y>
Secret Message
External Reward

m Actions:

Move N, E, S, W
Open box

m Reward Structure:
+10: open correct box
-10: open wrong box
-1: every other action

May 24, 2007 4



" S n

CmicHiGAN ]
" A\ T

Task #1 — Secret Message Task
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File Map Help

—Simulation
Run | Skop | Step |F‘.eset|

—Map
Food remaining: 0
Points remaining: 0
World count: i

Change Map |

—Map: taskl.emap

—Agents
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Initial Architecture in Storm
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Task #1 — Results
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Task #2 — SMT with Tools

m Message box contains two symbols
ldentity of correct box
ldentity of the correct action used to open box
m Rewards remain the same

Except that opening right box with wrong
action results in +1 reward

m Requires learning when & what to retrieve
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Task #2 — Results
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Task #2 — Expand WM

m Storing only one symbol results in slow learning
Could expand working memory
Could use sequences

m State representation

Was <X, y, most recent symbol>
Now <X, y, most recent symbol, 2" most recent symbol>

m How does expanding WM improve learning in
Task #27?
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Task #2 — Results with Expanded WM
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Task #2 — Delayed Retrieval

m Different function modules will eventually
have different timing constraints

m Modification:

Was: LTM retrieval took 1 step in environment

Now: LTM retrieval takes 2 steps in
environment

m s a simple learning mechanism sufficient
to learn with decoupled function modules?
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Timing In Initial Architecture
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Delayed Long-term Retrieval
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Task #2 — Results with Delay
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Task #2 — Results with Delay
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Storm Architecture Research Plan

m Long-term goal:

Create an architecture with brain-based
algorithms that model brain structure/function

m Short-term goals:
Debug/test framework

Explore effects of various architectural
commitments

Iteratively develop complex architectures
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TOSCA Architecture

m Comprehensive design for an artificial

mind, grounded in our knowledge of the
brain

m Assumptions:

Brain as control system, no central controller

Asynchronous, parallel, distributed processing
Multiple internal memories
Continuous learning
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Comparisons with Soar-like CAs
m Core data structure: m Core data structure:
Symbol structures Numeric vectors
Defined by programmer Symbol emerge?
Based on sensory
modalities?
m Programmable = Trainable
Human understandable Almost everything is
Directly taskable learned | |
Motivated by internal drives
m Real time using m Not close to real time
conventional today, requires massive
computational hardware parallel computation
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Gold Nuggets & Lumps of Coal

m Actively Using m Simple architecture
framework m Simple tasks
m Accomplishing ST m Lots of work left to be
Goals done...
Debug/test framework Both by researchers
Explore architectural AND by a learning
commitments architecture

lteratively develop
complex architectures
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