
Comparing Modeling Idioms in
ACT-R and Soar

Randolph M. Jones
rjones@soartech.com

Thanks to Christian Lebiere, Jacob Crossman, Robert Wray

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 2

Architectural Constraints on Cognition

� Make it easier to build “correct” cognitive models
� Make it harder to build “incorrect” cognitive models
� Behavior patterns that are difficult to code are assumed to

be difficult for a good reason
� Commonly occurring behavior patterns lead to

programming patterns or idioms
� Many idioms are relatively directly tied to architectural

constraints
� When taken seriously, idioms can significantly alter a

model’s predictions (timing, error rates and types, task
representation, etc.)

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 3

Basic Constraints in ACT-R and Soar

� ACT-R
• Cognitive constraint

• One production instantiation fires at a time

• Information constraints
• One chunk at a time per architectural module/buffer available to be matched by

productions
• One goal buffer
• One retrieval buffer
• Declarative memory only accessible through buffers

� Soar
• Cognitive constraint

• One operator selection (per state) at a time
• All operator selections go through the preference/selection mechanisms

• Information constraints
• Maintain internal logical consistency
• Operator objects automatically deselect when preconditions unmatch
• Direct working-memory changes restricted to “accept” and “reject”

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 4

Soar idiom: change-value

sp {operator*apply*change-
value*reject-old-values
(state <s> ^operator <o>

^change-value <cv>)
(<cv> ^id <id>

^att <att>
^value <value>)

(<id> ^<att> { <ov> <> <value> })
-->

(<id> ^<att> <ov> -)
}

sp {operator*apply*change-
value*assert-new-value
(state <s> ^operator <o>

^change-value <cv>)
(<cv> ^id <id>

^att <att>
^value <value>)

-(<id> ^<att>)
-->

(<id> ^<att> <value>)
}

sp {operator*apply*change-value*reject
(state <s> ^operator <o>

^change-value <cv>)
(<cv> ^id <id>

^att <att>
^value <value>)

(<id> ^<att> <value>)
-(<id> ^<att> { <ov> <> <value> })

-->
(<s> ^change-value <cv> -)

}

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 5

ACT-R Idiom: Grouping conceptual actions

� Only one production fires at a time, so operate on multiple buffers at
once

(p find-next-tower

=goal>

isa move-tower

disk =disk

peg =peg

state nil

==>

!output! "Retrieving disk

smaller than ~S" =disk

+retrieval>

isa next-smallest-disk

disk =disk

=goal>

state next)

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 6

Soar idiom: Modular parallel operator applications

� Multiple rules can fire in parallel, so prefer teasing apart
each action with its own conditions, so they can compose if
and only if necessary

sp {find-next-tower*apply*retrieve

(state <s> ^operator <o>

^current-goal <g>

^next-smallest-disk <nsd>)

(<o> ^name find-next-tower

^goal <g> ^disk <disk>)

(<nsd> ^disk <disk>)

-(<s> ^current-retrieval <nsd>)

(<disk> ^name <dname>)

-->

(write (crlf) |Retrieving disk
smaller than | <dname>)

(<s> ^change-value <cv>)

(<cv> ^id <s> ^att current-retrieval

^value <nsd>)}

sp {find-next-tower*apply*change-state

(state <s> ^operator <o>

^current-goal <g>

^next-smallest-disk <nsd>)

(<o> ^name find-next-tower

^goal <g> ^disk <disk>)

(<nsd> ^disk <disk>)

(<s> ^current-retrieval <nsd>)

-(<g> ^state next)

-->

(write (crlf) |Moving to state
"next"|)

(<s> ^change-value <cv>)

(<cv> ^id <g> ^att state

^value next)}

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 7

Soar Idiom: Serialization to avoid race conditions

� In examples like the previous Soar snippet, race conditions
can arise
• What if the “change-value” pattern takes longer to complete for one

of the parallel threads than for the other?
• The first one that completes may cause the operator to deselect
• To avoid such a race condition, the “safe” approach is to force the

actions to be implemented serially, each with its own operator

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 8

ACT-R Idiom: Query-Harvest rules for declarative-
memory retrieval

� Because rules must match declarative memory through the
retrieval buffer, every chunk the needs to be tested must
first be fetched into the buffer

(p find-spare-peg

=goal>

isa clear-disk

disk =disk current =on

peg =peg state nil

=retrieval>

isa next-smallest-disk disk =disk next =next

==>

!output! "Next smaller disk to ~S is ~S and

retrieving peg other than ~s and ~S" =disk =next

=on =peg

=goal>

disk =next state other

+retrieval>

isa spare-peg

current =on destination =peg)

(p clear-tower

=goal>

isa clear-disk disk =disk

current =on peg =peg

state other parent =parent

=retrieval>

isa spare-peg current =on

destination =peg other =other

==>

!output! "Subgoaling move-tower with disk ~S

peg ~S parent ~S" =disk =peg =parent

+goal>

isa move-tower

disk =disk

peg =other

parent =parent)

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 9

Soar Idiom: Simultaneous Query-Harvest

� Because Soar does not force matches to funnel through a retrieval buffer, a “retrieval”
step is usually unnecessary. Simply match against the information that is already in
declarative memory (sometimes implies large working-memory sets)

sp {clear-disk*propose*create-subgoal*move-tower
(state <s> ^current-goal <g> ^disk <disk>

^next-smallest-disk <nsd>
^spare-peg <sp>)

(<g> ^name clear-disk ^disk <disk>
^current <on> ^peg <peg> ^parent <parent>)

(<nsd> ^disk <disk> ^next <next>)
(<sp> ^current <on> ^destination <peg>

^other <other>)
(<next> ^name <dname>)
(<peg> ^name <pname>)
(<other> ^name <oname>)

-->
(write (crlf) |Create new subgoal move-tower
disk | <dname> | to peg | <oname> | to replace
clear-disk from peg | <pname>)
(<s> ^operator <o>)
(<o> ^name create-subgoal ^goal <ng>)
(<ng> ^name move-tower ^disk <next> ^peg <other>

^parent <parent> ^clear-parent *yes*)}

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 10

Soar Idiom: Preference-based partial ordering

� Soar’s preference mechanism can use subsets of operator-
relevance conditions to produce partial-ordering
constraints. This can allow economical representation of
fairly complex choices

sp {eat*propose

(state <s> ^agent <a>)

(<a> ^hungry yes)

-->

(<s> ^operator <o> + =)

(<o> ^name eat ^agent <a>)}

sp {drink*propose

(state <s> ^agent <a>)

(<a> ^thirsty yes)

-->

(<s> ^operator <o> + =)

(<o> ^name drink ^agent <a>)}

sp {prefer*eat*over*drink

(state <s> ^operator <o1> + <o2> +)

(<o1> ^name eat)

(<o2> ^name drink)

-->

(<s> ^operator <o1> > <o2>)}

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 11

ACT-R Idiom: Exhaustive enumeration of conjunctive
conditions

� ACT-R does not have a Soar-like preference mechanism for creating
contextual partial orderings. One approach is to enumerate all the conjunctive
conditions represented by different possible orderings and test for all of them
(through a serial sequence of retrievals).

(p check-hungry

=goal>

isa agent

name =name

state nil

==>

+retrieval>

isa property

agent =name

attribute hungry

value yes

=goal>

state hungry)

(p check-thirsty

=goal>

isa agent

name =name

state hungry

=retrieval>

isa error

==>

+retrieval>

isa property

agent =name

attribute thirsty

value yes

=goal>

state thirsty)

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 12

ACT-R Idiom: Ordering via partial matching

� An alternative method to ordering choices in ACT-R is to use the similarity-based partial-
matching feature of the ACT-R retrieval module. This requires specifying a similarity (or
dissimilarity) measure for the attributes and values that are relevant to the ordering
constraints.

(setsimilarities (hungry thirsty -0.5))

(p choose-action
=goal>

isa agent
name =name
state nil

==>
+retrieval>

isa property
agent =name
attribute hungry
value yes

=goal>
state unknown)

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 13

Soar Idiom: Exhaustive parallel processing of simil ar
items

� Because Soar does not limit access to declarative memory
and allows multiple rules to fire in parallel, some types of
exhaustive processing are easy to do all at once

sp {handle-messages*apply

(state <s> ^operator <o> ^message <m>)

(<o> ^name handle-messages)

(<m> ^text <t> ^message-handled false)

-->

(write (crlf) | Message is: | <t>)

(<m> ^message-handled false - true +)}

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 14

ACT-R Idiom: Exhaustive serial processing with Quer y-
Harvest

� ACT-R limits access to declarative memory to one chunk at a time, each of which must
be retrieved before it can be processed, and only one rule instantiation can fire at a time.
For exhaustive processing of similar items, this leads to a series of query-harvest rules
plus a rule to check when the process is done.

(p find-message-to-handle

=goal>

isa handle-message state nil

==>

=goal>

state harvest

+retrieval>

isa message handled false)

(p handle-message

=goal>

isa handle-message state harvest

=retrieval>

isa message text =text handled false

==>

!output! "~S" =text

=goal>

state nil

=retrieval>

handled true)

(p finish-handle-message

=goal>

isa handle-message

state harvest

=retrieval>

isa ERROR

condition Failure

==>

!output! "Done handling messages"

=goal>

state finished)

Soar Workshop | © 2007 Soar Technology, Inc. | Sl ide 15

Conclusions

� Nuggets
• Architectural constraints can have both subtle and significant

implications for the details of a cognitive model
• The modeling communities have developed a variety of idioms for

common “behavior units”
• Comparing these idioms gives some insights into the differences,

strengths, and weaknesses of each architecture

� Lumps
• Some of the architectural constraints are of questionable theoretical

value, but still can have significant impact on the types of idioms
that must be used, and hence the types of data models will produce

• A “more complete” cognitive architecture would probably combine
some of the constraints from ACT-R and Soar

