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•We learn over our entire lifetimes without 
catastrophic failures. 

•Our symbolic learning systems run only hours... 

•What do we need to do to get our learning 
systems to survive infancy?

The Issue
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• Soar’s original claim to fame was its chunking, which 
matched human data (Newell & Rosenbloom 1981) (but 
a footnote reported it failed after 259 problems because 
of a memory allocation problem...)

• Utility Problem:  Performance of AI’s symbolic 
learning systems eventually degrade making continued 
learning actually detrimental to performance (Minton 
1990, Holder 1990)  (in Soar: Tambe 1990, Doorenbos 
1995, Kennedy 2003)

• Humans don’t have a “utility problem”

• Maybe AI & Soar could benefit from the psychological 
side of cognitive science...

Background & Motivation
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Performance with Learning
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Power Law or Exponential Law
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Performance Problem (Occurring)
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Addressing Performance in Soar

• Restrict expressiveness of chunks  (Tambe)

• Improve matching  (Doorenbos)

• Forget low-use chunks (Kennedy)
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Addressing Performance in Soar
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Cognitive Science Concepts

“Cognitively Inspired”
An intelligent capability exhibited by commonly-accepted intelligent agents
BUT, not necessarily performed the same way the intelligent agents do.

“Cognitively Based/Plausible”
An intelligent capability exhibited by commonly-accepted intelligent agents
WITH evidence that it is performed the same way the intelligent agents do.

“Cognitive Science”
“If you just have formalisms or a model, you are doing ‘operations research’ or ‘AI’;

if you just have data and a good study, you are doing ‘experimental psychology’; and
if you just have ideas, you are doing ‘philosophy’.
-- it takes all three to do cognitive science.” (Wayne Gray’s e-mail signature)
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1-step Blocks World problems (on an old, slow, small Mac)

ACT-R theory, output, & reality
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Specifics of one run to failure

Failure in ACT-R (Reality)
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Two causes:

• Implementation detail: keeping old names around

• Calculation of activation for items in memory requires
the history of each use of each item

Performance Problems of ACT-R
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Theory’s formula for activation (eq. 4.1, Anderson & Lebiere, 1998)

A more computationally efficient approximation (Petrov, 2006)

Activation in ACT-R
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Theory’s formula for activation (eq. 4.1, Anderson & Lebiere, 1998)

A more computationally efficient approximation (Petrov, 2006)

Activation in ACT-R
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(from Petrov 2006)

Activation in ACT-R
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Extending ACT-R’s  Performance
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To survive infancy as long-term learning systems, both Soar 
and ACT-R have challenges:

Different approaches to working memory and procedural memory, 
Different approaches address their performance problems, 
But it’s all centered around memory…

The problem seems to be in deep in the vowels of memory 
(the I, O, or A support of memories).

Gold Nuggets and Coal

Long-term learning research takes patience…
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