
Soar IDE

Keith Knudsen, Mike Quist, Dave Ray & Bob Wray
{knudsen,ray,quist} @soartech.com

May 24, 2007



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 2

Soar Editors and Development Environments

� A (very incomplete) list of development support tools for Soar …

TAQL (5?)
CMU, 1989 

High-level language and toolset for Soar 
development

Operator templates

Soar Development 
Environment (6)
UM, 1995

Emacs-based editor & debugger Integrated editing and debugging; leveraged 
power of Emacs

TSI (7, 8)
UM, 1998

Tcl/Tk-based debugging Command macros; GUI-based commands

viSoar (7, 8?) 
Portsmouth, 1999

GUI-based editing environment Early approach to datamap; explicit support 
for teamwork/STEAM

Visual Soar (8)
UM, 2000

Full-featured editor
* Prototype integration with Eclipse

Explicit support for ONC hierarchy idiom; 
datamap

HLBRL (8)
PSU

High-level language and toolset for 
generation/creation of Soar programs

Explicit support for explanation, 

Soar IDE (8)
Soar Tech

Eclipse-based editor
(Future debugging environment)

THIS TALK ☺

“Building application domains creates a community with a large investment in ease of use, and hence with a 
willingness to expend the effort to make the tools to make [supporting and invigorating a theory] happen.”

[Newell, UTC]



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 3

What is the Soar IDE?

� Yet another editor for the Soar language
• Advanced parsing & error checking as you type
• Dynamically generated datamap as you type
• Support for embedded TCL

� Plugin to Eclipse development environment
� Public beta release this fall!



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 4

Why did we build it?

� Unsatisfied with constraints imposed by existing options
• UofM operator style limitations
• SoarTech heavily invested in inline Tcl

� Gained Eclipse experience after developing several other 
plugins

� Believed that building a more powerful (yet flexible) 
Tcl/Soar parser into the editor would:
• Catch errors earlier
• Reduce debugging time
• Improve Soar code understandability
• --> Improve productivity



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 5

Why Eclipse?

� Well-supported, stable, extensible environment
� Cross-platform support
� Consistent interface for multiple plugins
� Can include Soar files in a project with files of other types (Java, HLSR, 

XML, C++, HTML …)
� Plugin support for version control (Subversion, CVS, etc.)
� Significant base functionality to build on

• Project organization
• Flexible UI
• Customizable syntax highlighting
• Code expansion templates
• Error & warning reporting interface
• Update manager
• Regex cross file search and replace
• Diff tool integrated with version control & local changes history
• Advanced help tools (traditional & pop-up help)



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 6

What we built: 1) Soar Perspective

� Java Package Explorer
• Browse all files in the project; see iconic indications of errors, 

warnings, to-do’s, file and directory types
• Compare files to each other, to Subversion repository, or to local 

histories
� Soar Explorer

• Browse Soar files or productions in project
• Iconic indications of errors, warnings, etc

� Outline View
• Contents of active editor

• Productions
• Tcl procedures and variables
• Import (“source”) statements

� Problem reporting
� Full-featured code editor, Soar Source Viewer & Datamap 

(continued…)



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 7

What we built: 2) Soar Editor

� Syntax checking
• Highlights syntax errors while you type
• Errors collected in Problems View
• Catches some non-syntactic errors as well (scoping, 

etc.)
• Syntax coloring

� Line-by-line edit histories
� “Hover help” for Soar and Tcl commands
� Soar templates (sp) and keywords (excise, 

waitsnc, …)
� Tcl expansion (see slide)
� Dynamic datamap (see slide)



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 8

What we built: 3) Soar Explorer

� Filterable, sortable list of productions
� Iconic error and warning indicators
� Double-click to open in editor
� Selection is displayed in Soar Source 

Viewer (see slide)



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 9

What we built: 4) Soar Source Viewer

� Displays source code of current selection of active 
view (Package Explorer, Soar Explorer, Editor, etc)

• Soar files
• Productions
• Tcl Procedures

� Shows expanded Tcl (see slide)
� Useful for quickly browsing without opening several 

editors



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 10

What we built: 5) Tcl Expansion

• View original and 
Tcl-expanded 
source 
simultaneously

• Live updating of Tcl 
macro and variable 
definitions

• Tcl procedures 
appear in outline 
view



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 11

What we built: 6) Dynamic Datamap

� Shows tests (?), assignments 
(+), and values of attributes
• Context-sensitive, e.g., operator 

and goal ‘name’ attributes are 
distinct

• Hierarchy reflects the structure of 
working memory

� Updates along with code 
changes

� Linked to original productions
• Easily locate code that reads 

individual portions of input link, or 
that writes specific output-link 
commands



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 12

How is Soar IDE different from Visual Soar?

� Soar IDE benefits from being an Eclipse plugin
• Increasingly seems to be a significant advantage
• 100s of features in Eclipse base
• 1000s of features easily adopted from other Eclipse language plugins

� In-place TCL code expansion
• Killer feature from SoarTech's perspective, but does anyone else use TCL 

for Soar anymore?

� No constraints on directory structure
• Really useful for pulling in legacy code

� No constraints on UofM operator style
• But also no benefits

� Dynamic datamap generated as you type
• But…not partitioned by operator/problem space
• Just a big representation of working memory. Still useful, but may be 

extended in the future to handle filtering by operator



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 13

Technical Hurdles

� Tcl parsing
• Tcl is an extremely flexible language, difficult to find errors with just a basic 

parse.
• A random block of Java code is probably valid Tcl :)

� Tcl expansion on the fly and how to present it to the user
• Previous experience with integrating Tcl with SML made this less painful.

� Creating a parser that gives useful error information
• File/line/column style error reports are ok for command-line tools
• Eclipse works much better when given character ranges. Allows for nice 

underlying of bugs.
� Significant modifications to Visual Soar parser

• Errors reported as ranges rather than line/column
• Parse production bodies individually. Essential for parsing results of Tcl 

expansion.
� Performance

• Cache parse information and other metadata (necessary for large projects 
like TacAirSoar)



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 14

Eclipse Lessons Learned

� Use Eclipse to its fullest extent
• The Soar IDE code is highly coupled to Eclipse APIs.
• This made a huge difference in ease of implementation.

� Study of JDT source code for design
• We found that studying the Eclipse source code is essential for 

really making quality plugins.
• Books and online articles often only scratch the surface.

� Other beneifits of studying Eclipse source 
• Doing things the "Eclipse Way" leads to better integration with other 

plugins
• Avoids reinventing the wheel.



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 15

First Impressions from Soar Programmers

� Eclipse learning curve is steep
• … Because the environment is so rich.  File histories, integrated

CVS/Subversion access, visual diffs, maintenance of warnings and to-do’s, 
make it worth learning.  And many people use Eclipse already.

� Soar IDE editing features are outstanding
• Especially useful for larger projects, 
• Tcl-heavy projects, Integration projects (e.g., Java & Soar), and 
• projects with multiple developers (due to browsing features and integration 

w/ version control)

� Just starting to benefit from Dynamic Datamap
• Soar developers really like it
• Still learning how to best take advantage of it
• Rich source of feature requests

� Could use tighter integration with Java Soar Debugger
• Doug?



Soar Workshop |   © 2007 Soar Technology, Inc.  |  Sl ide 16

Demonstration

� Java TankSoar demo
• Included in the latest Soar distributions
• Includes Java and Soar code
• Will demonstrate the views and features just mentioned.

� How to get the IDE?
• Public beta release 

• Release planned this fall

• Currently being tested internally

• http://www.soartech.com/downloads.soar-ide.php
• soar-ide@soartech.com

• http://webmail.soartech.com/mailman/listinfo/soar-ide

• {knudsen, ray, quist} @soartech.com


