Bob Marinier 27th Soar Workshop May 24, 2007

SESAME & SOAR: A COMPARISON

SESAME OVERVIEW

- × SESAME is a theory of human cognition
 - + Stephan Kaplan (University of Michigan)
 - + Modeled at the connectionist level
 - + Mostly theory, not implementation
 - + Basis in perception
 - + Associative (Hebbian) learning used to explain a lot
 - Inspired more by animal and neural studies
 Soar and ACT-R inspired more by human behavior
 Emphasis on cortical areas of brain
 Not basal ganglia, hippocampus, etc.

MOTIVATION

- SESAME has some striking similarities to Soar, which may provide insight into the basis of those aspects
 - + Neural basis of rules, persistence, etc.
- Different emphasis that should be complementary to Soar's approach
- May provide a useful perspective on lots of things Soar is exploring these days
 - Working memory activation, clustering, sequencing, semantic memory, episodic memory, reinforcement learning, visual imagery

OUTLINE

- × For each topic:
 - + Describe topic from SESAME's perspective
 - + Compare to Soar
 - + Give possible inspiration/insight/lesson for Soar

× Topics:

- + Cell Assemblies (Symbols)
- + Memory (LTM and WM)
- + Activation
- + Persistence
- + Learning
- + Sequences
- + Episodic vs Semantic Memory
- + Metacognition
- + "Magic" of Human Cognition
- + Summary

CELL ASSEMBLIES

- How does the brain recognize an object in different situations?
 - + Some (random) neurons fire in response to specific features (e.g. color, size, texture, etc)
 - + Neurons that fire together wire together
 - After many experiences, a group of neurons representing common features for an object become associated as a unit called the cell assembly (CA)

CELL ASSEMBLIES

Cell assemblies are

- + Grounded in perception
- + Categories
- + Concepts
- + Prototypes
- + Symbols (but not in the full Newellian sense)

 Abstraction & Hierarchy: CAs at one level serve as features for the next level of CAs

- × Symbols are CAs
- × CAs are not fully Newellian
- CAs are grounded in perception
- CAs are categories, concepts, prototypes

SOAR

- Symbols are abstract basic unit
- × Symbols are fully Newellian
- Symbols can be grounded in perception
- Symbolic structures are categories and concepts, and can be prototypes

Insight: Where symbols come from, properties of symbols

COMPARISON: SYMBOLS

MEMORY

- CA structures are long-term memories
- × Working memory is the set of active CAs
 - + Activation is in-place (no retrievals or buffers)
- × Limited Working Memory Capacity
 - + Regional Inhibition: When CAs activate, they interfere with other nearby CAs
 - × CAs compete in winner-take-all fashion to become the active representation for object/thought
 - + Limits possible number of active CAs (WM capacity)
 - × Roughly 5±2 for familiar CAs, which tend to be more compact

- × LTM is network of all CAs
- × WM is set of active CAs
 - + Uses existing structure
- × WM is limited

SOAR

- LTM includes Production Memory, Semantic Memory, Episodic Memory
- WM is set of elements created or retrieved from LTM
 - + Creates new structure
- × WM is not limited

Insight: Same structure for LTM and WM, WM limitations

COMPARISON: MEMORY

ACTIVATION

Activity of a CA is dependent on factors including:

- + Connections from other active CAs
 - × Incoming connections may be excitatory or (locally) inhibitory
 - × Required set of active/inactive connections may be complex
- + Reverberation: Positive feedback allows CA to remain active beyond incoming activity
- + Fatigue: As CA remains active, threshold for activation increases
- May be able to describe spread of activation among CAs in rule form:

D

+ If A and B are active and C is inactive, then D activates.

В

- Activation spreads based on rule-like learned connections
- × Activation impacted by incoming connections, reverberation, inhibition, fatigue

× Spread of activation and CA activation are same thing Lesson: Neurologically-accurate WM activation model

SOAR

- × Symbol creation propagates via elaboration rules
- × Activation based on activation of symbols that cause rule match, boost from usage, and decay
- Symbol creation and activation are different

COMPARISON: ACTIVATION

PERSISTENCE (CONTROL)

- May need to keep a CA around for a while (e.g. to work on a problem)
- × Other "distraction" CAs can interfere
- Inhibitory attention blankets all CAs in (global) inhibition
 - + Highly active CAs are impervious to effect
 - + Weaker distractions are inhibited

- Persistence achieved via inhibitory attention
 - Prevents activation of distractor CAs

SOAR

- Persistence achieved via operator selection and application
 - Selection of an operator inhibits selection of other operators (and creation of associated symbols)

Insight: None really – Soar already uses inhibitory mechanism

COMPARISON: PERSISTENCE (CONTROL)

LEARNING

× Associative (Hebbian)

 Learns associations between CAs that are often active concurrently (CAs that fire together wire together)

Includes sequentially active CAs, since CAs reverberate

- Learns lack of association between CAs that are not commonly active concurrently
 - × Results in (local) inhibitory connections
- Learning rate is typically slow, but high arousal causes fast learning

- All learning is associative (doesn't really cover RL)
- Learning is typically slow (but modulated by arousal)

SOAR

- × Many types of learning
 - + Chunking
 - + Semantic
 - + Episodic
 - + Reinforcement
- Chunking, semantic and episodic are fast, reinforcement is typically slow (but modulated by learning rate)

Insight: Proliferation of learning types in Soar results from proliferation of memory types, role of arousal in learning

COMPARISON: LEARNING

SEQUENCES

- Sequences are stored in cognitive maps
- Cognitive maps are "landmark"-based maps of problem spaces
 - + Nodes are CAs
 - + Connections represent CAs that have been experienced in sequence
 - + Since experienced sequences overlap, novel sequences are also represented (composability)
- Problem solving involves finding paths through cognitive maps
- Paths may be associated with "affective" codes that help guide the search
 - + Codes learned via reinforcement learning

- Sequences stored in cognitive maps
- Can achieve limited composability
- Problem solving is searching through cognitive map (which represents problem space)
- RL helps improve search

SOAR

- Sequences can be stored in operator application rules or in declarative structures
- Can achieve arbitrary composability
- Problem solving is search through problem space
- × RL helps improve search

Insight: Limited composability may be enough

COMPARISON: SEQUENCES

EPISODIC VS SEMANTIC

- CAs are typically derived from multiple overlapping experiences
 - + Thus, tend to be semantic in nature
- A highly-arousing event may be strong enough to form its own CA
 - + Thus, can have episodes
 - Semantic Memory Formation

Episodic Memory Formation

EPISODIC VS SEMANTIC

- In general, there is no clear distinction between semantic and episodic memories
 - + CAs include full spectrum between episodic and semantic
 - + Each time a CA is active, can be modified (allows for episodic memory modification)
- Hippocampus thought to play a role in contextualizing episodic memories, but not in storage

- × No clear distinction
 - + CAs encode both kinds of memories with a smooth transition
- Story on role of hippocampus is not completely worked out
 - Memories are not stored in hippocampus

SOAR

- Episodic and semantic memories are learned, stored and retrieved separately
- Episodes are assumed to be initially stored in hippocampus before migrating to cortex

Insight: May not need separate episodic and semantic memories

COMPARISON: EPISODIC VS SEMANTIC

METACOGNITION

- Brain monitors CA activity to determine current state
 - + Focused, high levels of activation: Clarity
 - + Diffuse, lower levels of activation: Confusion
- Serves as signals about how processing is going
 - + Provides opportunity to change processing
- Clarity/Confusion experienced as pleasure/pain
 + Can influence learning
 - eleanning

- Clarity/Confusion signal how things are going
- Influence learning via pleasure/pain signals
- × Details are sketchy

SOAR

- Impasses arise when processing cannot proceed
- Allows for learning via chunking

Lesson: None really – impasses provide same functionality

COMPARISON: METACOGNITION

MAGIC OF HUMAN COGNITION

- × Special mechanisms
 - Human perceptual mechanisms are different than other animals
 - + Leads to different features that CAs learn over
- × Quantitative differences
 - Many animals have CAs and association mechanisms, but the larger quantity in humans may lead to qualitative differences

 In other words: There is no single mechanism that gets us the "magic" -- interaction of all pieces is necessary

x Everything is necessary
x Everything is necessary

SOAR

Laird's lesson: "There is no magic, just hard work"

COMPARISON: MAGIC OF HUMAN COGNITION

HIGHLIGHTS: WHAT SOAR CAN LEARN FROM SESAME

- SESAME ideas can provide grounding and inspiration for extensions to Soar
 - + Associative learning can get you:
 - × Non-arbitrary symbols via clustering-type mechanism
 - × Sequences
 - + Working memory
 - × Soar's activation model could account for more features
 - * Reverberation
 - * Fatigue
 - Inhibition (local, regional, and global)
 - × Basis for limited capacity
 - + Arbitrary composability may not be necessary
 - + The role of arousal in learning
 - Episodic/Semantic memories may not be as distinct as they are in Soar