# FEELING AS INTRINSIC REWARD

**Bob Marinier** 

John Laird

27<sup>th</sup> Soar Workshop

May 24, 2007



### **OVERVIEW**

• What are feelings good for?

- Intuitively, feelings should serve as a reward signal that can be used by reinforcement learning
- Outline
  - Emotion theory
  - Agency theory
  - Domain description
  - Features and results

# APPRAISAL THEORIES

- Appraisal theories postulate a set of dimensions that a person uses to evaluate a situation with respect to a goal
  - Typical dimensions include:
    - Novelty
    - Goal relevance
    - Goal conduciveness
    - Causal agent/motive
    - Outcome probability
    - Discrepancy from expectation
    - Power/control
- Regions of appraisal space map onto emotions
  - Examples:
    - high relevance + low conduciveness + other agent = anger
    - high relevance + high conduciveness = joy

### EMOTION, MOOD AND FEELING

- Emotion is about current situation
- Mood provides historical context
- Feeling is what agent actually (internally) perceives
- Emotion = result of current appraisals
- Mood = "average" of recent emotions
- Feeling = Emotion "+" Mood
- Feeling intensity = "surprise factor" \* average of appraisals
  - Surprise factor based on Outcome Probability and Discrepancy from Expectation

# THEORY OF AGENCY: NAFO

- Agent is organized around Newell's Abstract Functional Operations (NAFO)
  - Perceive: Input phase
  - Encode
    - Elaborations create general event structures
    - Novelty appraisals generated
  - Attend
    - Choose which event to process next
    - Enable complete appraisal generation
  - Comprehend: Generate complete appraisals
  - Intend
    - Determine motor actions
    - Create prediction
  - Decode, Motor: Output phase, environment processing
  - Task: Create and manages goals/subgoals

### DOMAIN

### • Wayfinding in Eaters

- Agent must find path from starting point to goal
- Appraisal heuristic: Dynamic difference reduction
  - Moving directly towards goal is good
  - If can't move directly towards goal, can create a subgoal
  - Movement in subgoal not as good as movement in main goal

#### • Simple episodic memory

- Agent has some idea of whether its getting closer to the goal
  - Classifies a subgoal as good or bad



# **RL DESCRIPTION OF DOMAIN**

- Learns which functional operations to execute to get to goal with highest reward
- Encoded event: Direction + on path + passable (+ goal)
- Actions
- Attend to an event (then Ignore or Intend)
  - State: Event + good/bad subgoal
- Create a subgoal
  - State: All 4 events + subgoal
- Retrieve a supergoal
  - State: All 4 events
- Reward = (feeling intensity)\*Valence(goal conduciveness)
- This is hard
- States are only partially observable
- Non-Markovian (history matters): Recent states influence reward via mood

### METHODOLOGY

- 15 episodes, 50 trials/episode
- Episode cutoff after 10000 steps
- Reporting median
- Action selection: epsilon greedy
- Exploration rate starts at 10%, decreases to 0 in 11<sup>th</sup> episode
- Learning rate starts at 0.3, decreases to 0 in 15<sup>th</sup> episode
- Agent keeps cognitive map across episodes (where applicable)

### **RESULTS: VARIABLES TESTED**

• Mood (on/off)

• Cognitive map (on/off)

- A way to learn about space as a whole
- Dynamic learning (on/off)
  - A way for the agent to adjust its learning rate









### COGNITIVE MAPS

- Using pure RL, agent will never learn overall space
  - To maximize reward, always has to create subgoals
- A cognitive map is a landmark-based map of problem space
  - Allows agent to "see" direct route to goal (i.e. states are encoded as on path)
  - Allows agent to skip subgoals
- Cognitive map is used to make predictions based on experience
  - This makes the RL problem nonstationary
    - As the agent gets better at predicting events, the reward it gets goes down

### **RESULTS: MOOD & COGNITIVE MAP**



 $\rightarrow$  Base  $\rightarrow$  CM  $\rightarrow$  Mood  $\rightarrow$  Mood+CM





# DYNAMIC LEARNING RATE

• RL typically decreases learning rate over time

- Often required for convergence
- No theory of source of decrease
- Requires knowing the number of episodes in advance
- Idea: If agent is able to predict what will happen next, don't need to learn anything
  - Learning rate = feeling intensity
    - Since feeling intensity includes "surprise factor", an agent will only learn when it is "surprised"

### RESULTS: LEARNING RATE (MOOD+CM)



----Fixed ----Decreasing -----Dynamic

### RESULTS: LEARNING RATE (MOOD+CM)



# ELIGIBILITY TRACES

- Normal RL only backs up reward one step at a time
- Eligibility traces allow the agent to back up many steps, with decreasing influence determined by Lambda
  - Lambda=0: standard RL
  - Lambda=1: Monte-Carlo (all previous states equally influenced)
- Conceptually similar to mood
  - Mood: current reward influences reward (and hence value) for next states
  - Eligibility traces: current reward influences value for last states
- Will compare to mood, and in combination with mood

## RESULTS: MOOD VS. ELIGIBILITY TRACES



### DISCUSSION

#### • Agent learns fast!

- Reward at every dc helps a lot
- Mood accelerates learning
  - Estimates the value of states in the absence of emotion
- Cognitive map improves performance
- Dynamic learning rate helps
- Agent needs a better episodic memory
  - Has a really hard time telling states apart in bad subgoals
    - Often gets stuck in looping behavior
    - Individual runs often regress in performance

#### • Nuggets

- Links cognition, affect, and learning
- Agent learns well

### • Coal

- Agent is fragile and (sometimes) inconsistent
- Simple domain means (relatively) simple implementation

#### • Future work

- Move to continuous, dynamic domain
  - Should reduce partial observability issues
  - Force increased sophistication appraisal, functional operations, cognitive map, episodic memory
- Modulate exploration rate