
Storm Framework
(Formerly known as Tosca)

Douglas Pearson
Nick Gorski, Rick Lewis, John Laird

Soar 27: May 24th, 2007

doug@threepenny.net



2

The Really Big Goal

• Research in Cognitive Architectures
– Architecture: Cognitive systems built on top of a fixed set of capabilities
– In some sense all Soar research contributes to this goal
– Exploring the space of possible architectures
– A major focus of John’s career

• But
– Research at the architectural level is difficult
– Theoretical concepts are easily muddled with implementation details
– Architectural components are hard to replace or experiment with

• E.g. Changing Soar’s working memory implementation would be v. hard

– Hard to evaluate the contribution of different architectural components
– Biological constraints (brain mapping) is in the eye of the researcher



3

The Proposal: A Framework

• Current approach: AI System

Architecture

C++, Java etc.

AI System

Architecture

C++, Java etc.

Storm Framework

• Proposal:

Architectures make it easier to do research on AI systems
Hope is the Storm framework makes it easier to do research on architectures

Rules, wmes

Soar Kernel



4

Major Goals for Storm Framework

1. Easy to experiment on architectural elements
– Plug-in modules, quickly replaceable
– Supports experimentation
– Also supports distributed development well

2. Support heterogeneous collection of components
– Allow researchers to work in a language they find convenient (C++, Java, R, Matlab etc.)
– Each component executing in parallel on possibly different timescales
– All integrated together into a single executing model by the framework

3. Ensure strong biological commitments made by architecture
– Explicit representation of how processing maps to the brain
– Explicit representation of which communication pathways are used in the brain

4. Flexible runtime configurations
– Running on multiple operating systems
– Running a simulation on a single machine
– Running a simulation on a cluster of machines etc.

5. Flexible computational model
– General focus is on flexibility
– Architecture will likely be a more tightly defined and constrained model than the framework, 

which is more of a general purpose toolkit



5

Major Storm Elements

1. Function modules
– Perform processing

2. State Variables
– Hold all persistent data structures
– Used for communication between 

modules
– Examples:

• Vector of floating point values 
(e.g. weights)

• Frame buffer of image data
• Control variables

A

M1B

C

D M2

Define brain mapping and brain connectivity based on these elements, through 3 graphs:
- Functional connectivity graph
- Brain mapping graph
- Brain connectivity graph



6

Functional Connectivity Graph

• Establishes a mapping of state variables to inputs and 
outputs of function modules:

• Implicitly defined by associations between modules and 
variables
– E.g. M1 registers inputs A,B,C and output D

• State variables used for all persistent data



7

Brain Mapping Graph

• Mapping from state variable to brain regions

• Explicitly represented as a data structure in the framework
• Mapping will be complete

– All state variables must map to a brain region
• May include unspecified regions

– Makes gaps in the theory explicit



8

Brain Connectivity Graph

• Implied by function connectivity and brain mapping 
graphs

• Explicitly represent constraints on this mapping in the framework
• Automatic detection of constraint violations



9

Sample Code

Value inputA = GetInput(“A”, time) ;
Value inputB = GetInput(“B”, time) ;
Value inputC = GetInput(“C”, time) ;

// Timescale need not be constant
ClockCannotAdvanceBeyond(time+5) ;

// Calculate the output

// Post the result
GetOuput(“D”)->SetValue(result, time+5) ;

RegisterWakeup(time+10) ;GetInput(“A”)->NotifyWhenChanges(delay) ;

Event-driven : executes when input(s) change Time-driven: executes at fixed rate



10

Framework Design

• Framework provides an abstraction
– Each module is defined in terms of its own temporal constraints and with its own 

communication requirements
– The framework handles the details of synchronization and handling actual communication

• Event triggers
– Clock-based (after certain elapsed time) or
– Event-based (after input changes)

– Delays : inputs and outputs can include delays to model transmission time

• Flexible runtime configurations
– Basing all comms on message passing between state variables, can generalize across:

• Single process executing on one machine
• Multiple processes using shared memory on one machine
• Multiple machines communicating on a network

– Current implementation executes each module in a separate thread
• That base ensures separation between modules and explicit communication
• Extends very well to multi-core revolution
• Could support remote modules (machine clusters) in straightforward manner

• Language flexibility
– Core implementation is in C++
– Build interface modules to other languages using SWIG (same as used in SML).



11

Compose elements

Current implementation: Multiple communicating modules, different timescales.
No support yet for multiple clocks (should boost execution parallelism)



12

Summary

• Target is a flexible infrastructure layer that
– Enhances experimentation
– Forces brain commitments to be explicit
– Scales flexibly to multiple machines, operating systems etc.
– Supports a range of languages
– Abstracts over communication details
– Supports asynchronous execution
– Supports a range of modeled time scales



13

Nuggets and Coal

• Nuggets – implemented features
– Function modules
– State variables
– Hierarchical state variables
– Connectivity graph
– Brain mapping graph
– Brain connectivity graph
– Multi-threaded, single machine
– Cross language (C++ and Java)
– Tracing tool based on output logs

• Coal – not yet implemented
– Multiple clocks / hierarchical function modules
– Constraints violation detection
– Cross machine communication
– Linux, R and Matlab support
– Higher level constructs for building modules/state variables
– Proof that really supports experimentation


