

Toward a Hybrid Cultural Cognitive Architecture

Glenn Taylor & Mike Quist

24 May 2007 Soar Workshop

Problem Statement

 Human Behavior Models tend to "mirror" their American developers, not taking into account (among other things) the particular background/motivations of the person or groups we're modeling

- One big behavioral motivator in humans is culture
 - surface features (dress, architecture, language)
 - cognitive features (norms, values)
 - interactional features (organizational behavior, language use)
- Overall Goal: a "Cultural Cognitive Agent Architecture" used to build HBMs that exhibit behavior consistent with cultural influences (and what would Soar have to say about it?)

Approach: (Cultural) Schema Theory

- D'Andrade (1992); Quinn & Strauss (2001); others
 - From a cognitive anthropology perspective: culture has rich knowledgebased representations within an individual's cognition,
 - Affects cognition in various ways:
 - perception what is this situation I'm in?
 - appraisal/emotion how should I feel in this situation?
 - expectation what should happen next?
 - action selection what should I do in this situation?
 - Culture is epiphenomenal falls out of cognition, schema theory
- Multitudes of cultural "stories" acquired over time that describe, for example,
 - everyday activities (going to a restaurant, personal interactions)
 - objects and their importance (monuments, sacred objects)
 - organizational structure (religious leader hierarchy)

(Cultural) Schema Theory

- Schema Properties (Bartlett; D'Andrade; Schank; Minsky; etc)
 - Serve as organized representations of knowledge about events, things, relationships, etc. (there are many kinds of schema)
 - Serve as processors of information, recognizing events or objects in the environment, and assigning meaning to those events or objects
 - Can be composed hierarchically that is, the output interpretation of one schema is passed to another schema as input
 - Are learned through experience

Cultural Schema

- learned as part of the enculturation process deliberately (taught) or as a matter of experience
- Patterns for recognition, understanding within cultural context
- Patterns for appropriate/expected behavior ("norms")

Simple Example – Event Schema à la Schank

Key Ideas

- Culture is about knowledge
 - inference, values, goals, motivations, beliefs, objects, meaning, perceptions
- Cultural "behaviors" are epiphenomenal
 - They "fall out" of normal cognition, where "content" of cognition is about norms, obligations, relationships, etc.
- Schema are
 - hierarchically organized
 - used for recognizing/understanding situation
 - used for driving behaviors and expectations

Background: Soar – Relevance

- Strengths of Soar w.r.t. Cultural Schema Theory
 - "Knowledge-Rich" BDI agent paradigm
 - goals, beliefs, etc.
 - Scalable Long-term Memory
 - lots of schema about lots of situations/things
 - Relevance-based memory activation
 - if rule matches situation, new knowledge is activated
 - Automatic and Deliberative Reasoning
 - mixed behavior memory retrieval is automatic; choice/conflict requires deliberation
 - General Graph-based working memory
 - can be used to represent schema

Other bits: Activation and Appraisal Theory

- Schema Activation:
 - Key aspect of schema theory is "schema as processor"
 - Activation serves to:
 - determine relevance of events
 - manage competing situational assessments
 - manage conflict between goals/actions
- Appraisal Theory:
 - observed events are appraised with respect to one's goals and expectations
 - appraisals generate emotions
 - emotions moderate behavior (e.g., action selection for coping strategies)
 - Included here as a way to generate variable behavior

Knowledge-Based Cultural Cognitive Architecture

Soar Architecture

Knowledge-Based Cultural Cognitive Architecture (with Appraisal/Emotion)

Event Schema

New Knowledge Representations:

- Hierarchical Schema
- Events

New Processes:

- Activation & Decay
- Schema Recognition
- Goal Generation
- Event Appraisal
- Emotion Generation
- Emotion-based Coping

Cultural Schema Theory (D'Andrade, et al.)
Universal Contingency Theory (Ellsworth, et al)
Appraisal Theory (Sherer, Ortony, etc...)

Information Processing
Deliberative Decision-Making
Short-Term Memory
Associative Long-Term Memory
PEACTIDM Theory
Beliefs-Desires-Intents Theory

High-level Overview

Schema Definitions

- "Schema Leaf Nodes"
 - Matches a single concrete event ("trigger")
 - Activation conditions determining how well concrete actions fit the schema in the current context
 - "A approaches B" ==> "A confronts B" if A looks angry
- "Schema"
 - A sequence of scenes
 - Each scene can have multiple realizations, or "expansions", in terms of lower-level schemas
 - Expansions have their own activation conditions
 - Scenes may be optional
- Defined in terms of abstract roles, which will be bound to concrete entities when a schema is activated

Schema

Defined recursively in terms of lower-order schemas, which constitute "scenes"

Event Representation

- Defined in terms of their thematic roles
 - Agent
 - Experiencer
 - Theme
 - Type
 - ...
- Events are used to:
 - Activate new (event) schemas
 - Advance existing active (script) schemas
 - Generate appraisals that affect agents' emotions

Thematic Role	Definition
Agent	The volitional causer of an event
Experiencer	The experience of an event
Force	The non-volitional causer of the event
Theme	The participant most directly affected by an event
Result	The end product of an event
Content	The proposition or content of a propositional event
Instrument	An instrument used in an event
Beneficiary	The beneficiary of an event
Source	The origin of the object of a transfer event
Goal	The destination of an object of a transfer event

(Martin & Jurafsky, Speech & Language Processing, 2000)

Overall Flow

- Incoming events play many roles
 - Advancing/confirming active schemas
 - Creating new schemas that interrupt the current active schema

Knock Event

 Reactivating suspended schemas

Overall Flow

- Incoming events play many roles
 - Advancing/confirming active schemas
 - Creating new schemas that interrupt the current active schema
 - Reactivating suspended schemas

Overall Flow

- Incoming events play many roles
 - Advancing/confirming active schemas
 - Creating new schemas that interrupt the current active schema
 - Reactivating suspended schemas

Suspended

Schema Activation

- Single event can create multiple active schemas
 - Activation levels may differ based on activation conditions
 - Role bindings may differ

Event Processing & Schema Activation

Schema Activation Conditions

- Activation is controlled by qualitative and quantitative tests of role entities' attributes
- Conditions are represented in XML
 - These are automatically translated into production rules

```
<activation-condition>
   <A>
      <isa>Person</isa>
   </A>
   <B>
      <isa>Person</isa>
      <rage>
         <qreater-than>0.5</preater-than>
      </rage>
   </B>
</activation-condition>
<activation-condition>
   <relevance type='double'>0.5</relevance>
   <B>
      <knows>A</knows>
   </B>
</activation-condition>
```


Agent Goal Creation

 When an active script's next scene begins with an event that the agent can cause to occur, the agent considers taking an appropriate action

Agent Goal Creation

- Some schemas may also begin spontaneously, weighted only by their activation conditions
- Among the proposed actions, the agent currently prefers those with the highest calculated activation level...
 i.e., agent follows script that it believes is happening
- If scripts were annotated with results, agent could bias selection toward higher-level goals, i.e., follow the script that it *wants* to be happening

Event Appraisal

 Appraisal dimensions are mapped to emotional dimensions through a simple matrix multiplication

\ \	1	/	\	/	/	1	1	1	\	\	/	1		
suddenness	6 2	Clighter.	Contento	Sadness	Clescoli	anxiety.	(g)	Malida	age	Doredon	Stante	Stijj	Pride	
**********	L	MH			L	Н	L	Н	L	Н	VL	L		Т
familiarity			L		L	VL		L		L	н			T
predictability	М	L	L			L		L	м	L.	VH			$^{+}$
intrinsic-pleasantness	Н	-	VL	1	1	1	_	L	1	-	-			1
goal-relevance	м	Н	L	L	н	н	М	Н	M	н	L	Н	Н	Н
causal-agent	IM	n	L		п				IVI		L		-	-
causal-motive	_	1 2/63	-	oth		o/n	o/n	o/n		oth	-	self	self	Se
outcome-probability	int	c/i		int	c/n	c/n		_	I/n	int		i/n	int	in
discrepancy-from-	VH	VH	VH	Н	VH	VH	M	Н	VH	VH	VH	VH	VH	V
expectation	con					dis		dis		dis	con			
conduciveness	Н	VH			obs	obs	obs	obs	obs	obs			Н	Н
urgency	VL	L	M	L	L	Н	M	VH	М	Н	L	Н	М	L
control				Н	VL	VL			Н	Н	M			Т
power				L	VL	VL	L	VL	М	н	M			
adjustment	Н	М		Н	M	VL	M	L	Н	Н	Н	M	М	Н
internal-standards				VL								VL	VL	V
external-standards				VL					L	L			VL	Н

Simplified from original appraisal matrix [Scherer]

Event Appraisal

 Individual events are "appraised" (assigned values for appraisal dimensions) based on a lookup table

Use Case: House to House Search

- Training context: training soldiers to do house-to-house searches
 - Training Goal: Understand how Iraqis might respond to different ways of doing search, interactions with Iraqis (kick in door, knock, talk to head of household, etc.)
 - Modeling Goal: "Culturally Representative" model of Head of Household in interactions/responses to Blue forces

Example: House Search Schema

Demonstrator Screenshot

Evaluation: Nuggets & Coal

Nuggets:

- Reasonable first pass at representing cultural behavior as schema
 - plays to the strengths of the Soar architecture
- Essentially an implementation of symbolic plan recognition
- Implemented "Choose your own adventure" training prototype
- Interface to see what agent is "feeling"/"thinking" about

Coal:

- Very preliminary
 - only deal with Event Schema for now
 - little/no deliberation about action selection/conflict resolution
- Activation process is ad hoc could be more robust
 - Chong/Nuxoll work? Bayesian?
- Appraisal/Emotion model very weak
 - Pull in Marinier work? Other emotion models?

