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Motivations

 Functional characterization

— Use temporal sequence representation in the
context of reinforcement learning

— Explore Soar-RL
e Cognitive modeling

— Testing hypothesis - compare simulation
results with experimental data

— Compare different models
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T-maze Task

(Tolman & Honzik 1930)
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Experiment Result

(Tolman & Honzik 1930)
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Task Constraints
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Soar-RL Representation

Rules at the level of seq 1
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Soar-RL Representation

Rules at the level of seq 2
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Soar-RL Representation

Rules at the level of seq 2

zp {%oar-RL-5
[state <3> ~action-history-sedquence <ahs> 8

~operator _=g= +) —
[<ahs> ~previous-l/north
~previous-:2\ east)
[<0> ~name wove

~direction( =ast)

-
[#8> ~operator <o> = 1.0)
}

2p {3o0ar-RBL-&
[state <3> ~action-historvy-sedquence <ahs>
~operator <ok +)

[<ahs> ~prewvious-1l/north
~previouz-2\ east)

[<0F ~rane §ove 1
"directiu:u
-

[<2> ~operator <o>x = -0.5)
}

]11

The final utility value for a state-action pair is the sum of matched rules
from all specificity levels 11



General-to-Specific Reinforcement Learning
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Q Value and Action Probability
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Q Value and Action Probability
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Q value difference
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Simulation Results

Simulation with level 0 to level 4
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Perentage of error
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Compare with an ACT-R Model
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An ACT-R model with general rules and

specific rules
(FU & Anderson 2006)
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Correlation Matrix

Observed Soar0~4 Soar 0,4 ACT-R
Observed i <0.99 0.89 0.86
Soar 0~4 i i i 0.86

Soar 0,4 i i i (095)

ACT-R
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Comparison

ACT-R model

— Can have prediction with correlation 0.95 by adjusting learning
parameters (unpublished data)

— Still cannot explain why error rate at blind 4 is much lower than
at number 3 (which can be explained by having more
iIntermediate levels)

— Can have potentially more accurate predictions with the action
history representation as in Soar
Soar model

— The exponential discount in Soar-RL results in poor match for
later blinds (12,13,14). ACT-R uses a linear discount formula
that better matches the data.

— Can explain earlier blinds well, especially number 3 and number
4
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Comparison

Model Level

Architectural Level

ACT-R Model | Assume unique choice point labels Single rule firing and independent
updating, learn one rule per decision
Soar Model Sequence of action history as state Parallel RL rule firing and updating -

representation at different specificity
levels

learn all levels simultaneously
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Conclusions

e Soar-RL reinforcement learning
mechanism naturally models general-to-
specific learning

* The results suggest that rats use
seguence of action history to discriminate
situations
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Nuggets and Coal

 Nuggets
— Explored some applications of Soar-RL

— Soar-RL model with action history sequence
matches rats data well

e Coal
— Still mismatch some data points
— Confirmation of hypothesis is not very strong
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