

Metrics for Cognitive Architecture Evaluation

Bob Wray & Christian Lebiere wray@soartech.com 23 May 2007

Evaluation of Soar in UTC (Functional)

Behave flexibly	yes	
Exhibit adaptive behavior	yes	
Operate in real-time	yes	
Operate in rich environment		
 Perceive dynamic details 	interface (yes)	
 Use vast amounts of knowledge 	yes	
 Control a motor system 	interface (yes)	
Use symbols and abstractions	yes	
Use language	no (yes)	
Acquire capabilities via development	no	
Operate within a social community	no (yes)	
Be self-aware	no	

"Yes" indicates a demonstration of satisfaction of these requirements?

 In some particular case?

 To what extent?

Evaluation of Soar in AIJ (Coverage)

- Knowledge-lean tasks
- Al toy problems (e.g. blocks world)
- Small routine tasks
- Unification, syllogisms, etc.

Knowledge-intensive expert-system tasks:

• R1-Soar, NeoMYCIN, DESIGNER

Miscellaneous AI Tasks/Capabilities:

• Language processing, *planning*, etc.

Learning

- Learns on all tasks it performs (whoops...)
- Practice, transfer, strategy acquisition, operator implementation, macros, EBL
- Conceptual, instruction & observation, error recovery, reinforcement, ...

Dynamic, knowledge-based control & interaction

- Robotic control (Hero-Soar, Air-Soar)
- Human Behavior Representations (TacAir-Soar)
- Multi-agent Systems (IDA)

 "Box scores don't belong is science.... But some way is needed to emphasize how important coverage is." (UTC)

"Newell Test" Evaluations of ACT-R & Classical Connectionism

Functional Criteria	ACT-R	CC	Soar
Behave flexibly	Better	Mixed	
Exhibit adaptive behavior	Better	Better	
Operate in real-time	Best	Worse	
Vast knowledge of rich environments	Mixed	Worse	
Knowledge integration/distal access	Mixed	Worse	
Use language	Worse	Better	
Learn from environment	Better	Better	
Be self-aware	Worse	Worse	

"Grades" are comparative within each theory; not across theories.

 Adapted from Anderson, J. R., & Lebiere, C. (2003). The Newell test for a theory of cognition. *Behavioral and Brain Science*, 26, 587-637

Why we need better evaluations...

- Newell's criteria are not solidly defined:
 - "Operate in real time"
 - "Adaptive behavior"
- Instance-based grading is not really that insightful
 - One application/model is insufficient for "grading"
 - Anderson & Lebiere survey approach is still "soft"/subjective
- Generality is the fundamental goal of cognitive architectures
 - Generality implies a significant utility/value over many different types of problems
 - Benchmark performance is the current gold-standard in Al
 - Application-specific solutions almost always "out perform" cognitivearchitecture-based solutions in CPU/thruput/etc.
 - Critical need in "applied cognitive architecture" is ways to make the power of cognitive architecture approach evident in a metrics-driven funding environment
- How can we evaluate and communicate progress toward generality in the language of science (empirical demonstrations of phenomena)?

Can we improve on evaluations?

- Start taking each Newell-Test criteria seriously: What measures could be applied?
- Understand and present performance measures in the context of the Newell-Test criteria

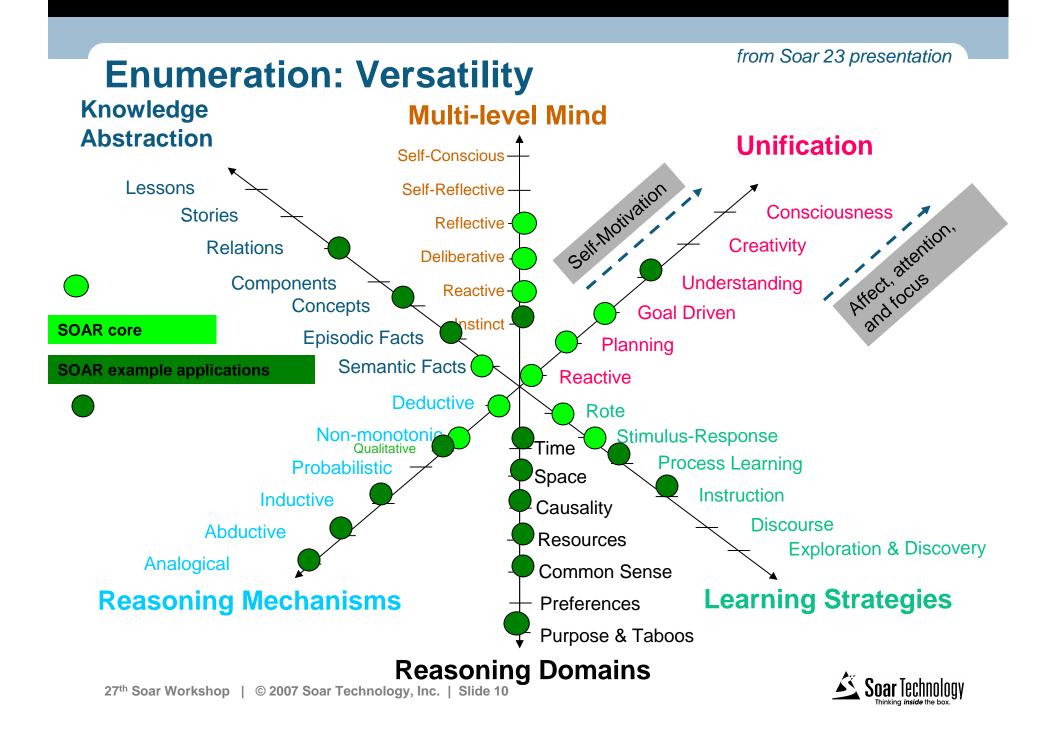
Creating Metrics

- Newell Test outlines what we want to measure
 - *How* do we measure the desired characteristics?
- Solutions/directions:
 - Objective, problem-independent measures
 - Cognitive operations, response time, incrementality
 - Problem/solution-specific quantitative metrics
 - Adaptivity

desirability

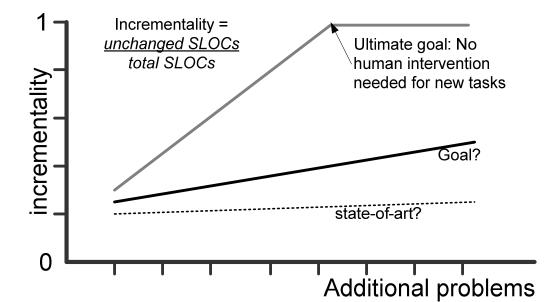
- Subjective consensus rankings
 - Problem complexity judgments
- Enumerations ("Box scores")
 - Versatility
- Goal here is to <u>begin</u> the process of defining good (objective, quantitative) metrics for many cognitive-architecture-based applications
 - Appropriate metrics enable hypothesis-driven scientific exploration
 - Tools for asking questions
 - Specific problems will drive which metrics become more fully elaborated

Newell Test Criterion


- Anderson & Lebiere
 - How do Anderson and Lebiere define this criterion? How do they "grade" it?
- Evaluation focus:
 - How might we define the criterion in fully functional terms?
- Measures
 - Ideas for measures for this criterion

Behave flexibly

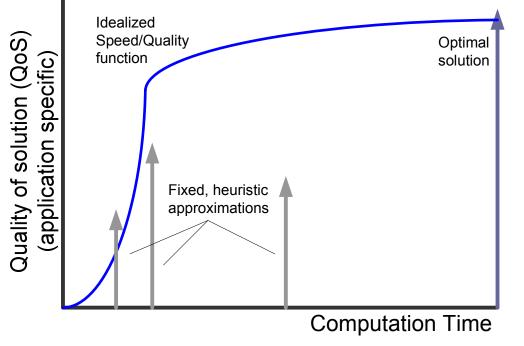
- Anderson & Lebiere:
 - Universal computation
 - "ability to learn to perform almost arbitrary cognitive tasks to high degrees of expertise.... [with] no anticipation in human evolutionary history."
- Evaluation focus:
 - Breadth and autonomy of capability
- Measures:
 - Versatility: Box score list of domains
 - Taskability
 - Domain-specific measures of transfer and novelty (e.g., Transfer Learning?)


Behave flexibly

- Anderson & Lebiere:
 - Universal computation
 - "ability to learn to perform almost arbitrary cognitive tasks to high degrees of expertise.... [with] no anticipation in human evolutionary history."
- Evaluation focus:
 - Breadth and autonomy of capability
- Measures:
 - Versatility: Box score list of domains
 - Taskability
 - Domain-specific measures of transfer and novelty (e.g., Transfer Learning?)
 - Incrementality
 - Measure reuse from one application to the next

Measure: Incrementality

- Simple measure
 - Analog to SE?
 - Simple tools (diff?)
 - Decompose for more fine-grained comparisons
 - Soar 7 vs. 8 . vs. 9
 - TAS vs. MOUTBots
- Value



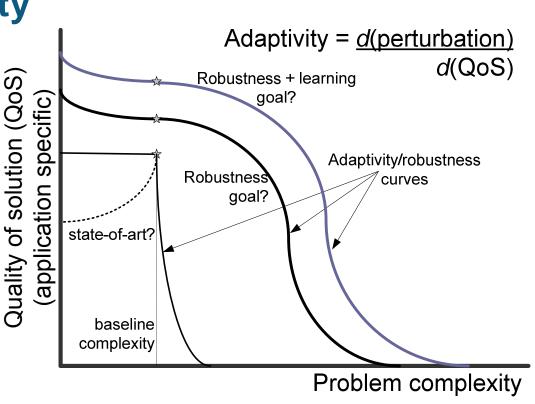
- Immediate transparency of reuse from one application to another
- Motivator for reuse of knowledge-representation-level capabilities?
- Driver for general, usable "default rules" capabilities: planning, impasse resolution, etc.

Operate in Real-time

- Anderson & Lebiere:
 - How can cognition be simulated in "human time"
- Evaluation focus:
 - Measures of actual performance
 - Be explicit about cost of analytic solutions, lack of anytime properties
 - Translate to human simulation time for cognitive models

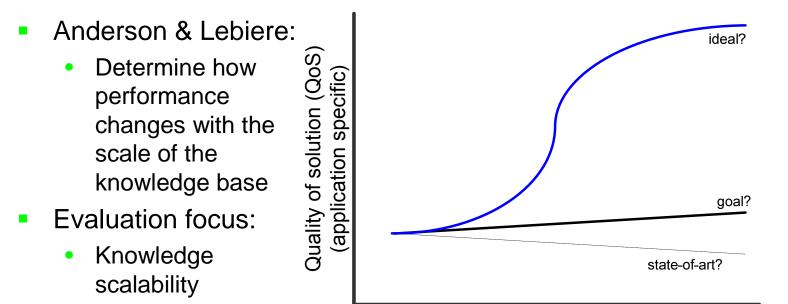
Typical Performance Metrics

- Cognitive operations/unit time
 - Throughput of the cognitive architectures (decisions/sec)
- Response time
 - Time to respond to a particular problem or situation
- Footprint
 - Memory, CPU %, interconnect bandwidth, etc.
- All performance measures are relative:
 - to the problem
 - to the application/implementation
 - to the hardware implementation
 - Many (most?) do not understand the relativity of performance measures!


Exhibit adaptive behavior

- Anderson & Lebiere:
 - Rational analysis; architectural and system-level adaptation to actual environment
- Evaluation focus:
 - How well does a system behave in situations it was not specifically designed for?
- Measures:
 - Adaptivity: Measure how well a system responds to perturbations in the task environment
 - Performance measures:
 - E.g., How does response time change in under perturbation conditions?

Measure: Adaptivity


- Response of system to perturbation in the "designed" operational environment
- Not a learning metric, but adaptivity may be improved by learning
- Analog to stability region in control systems

- Limitations:
 - Domain-/problem-specific
 - Requires "problem complexity" dimension
 - Requires baseline performance system

Use vast amounts of knowledge

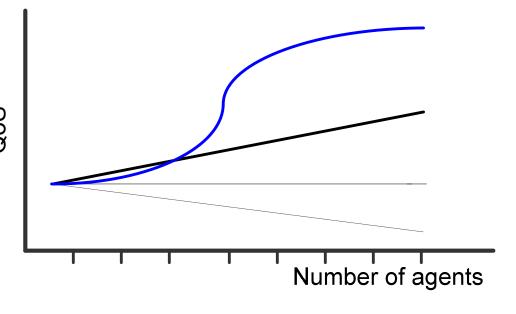
Measures:

Knowledge Capacity

- **Knowledge capacity**: How much "knowledge" is encoded in an agent?
- **Knowledge utilization**: How much of the encoded "knowledge" is actually used in solving a suite of problems?
- Performance measures:
 - How do performance measures (COPS, footprint, response time) change with knowledge capacity and knowledge utilization?

Behave Robustly

- Not included in Anderson & Lebiere list (likely included in their view of adaptivity)
- Evaluation focus:
 - Ability to handle uncertain, incomplete, stochastic information
 - Different from adaptivity (but related)
 - Highlights ability to cope with uncertain and incomplete information within the basic task performance space
- Measures:
 - Robustness: Domain-specific measures (e.g., Nielsen, Beard et al, 2002)
 - **Stochastic assimilation**: Ability to capture and express stochastic distributions in the environment



Integrate knowledge

- Anderson & Lebiere:
 - Produce intellectual activities that are the hallmarks of human capacity for intellectual combination.... things like inference, induction, metaphor, and analogy.
- Evaluation focus:
 - Versatility: Enumeration of capabilities (for now?)
- Open questions:
 - How can we avoid/diminish "wishful thinking"?

Behave autonomously in a social environment

- Anderson & Lebiere
 - Mostly focus on language, rather than the social on environment generally of
- Evaluation focus:
 - To what extent does social environment impact the performance of the agent?
- Measures:
 - **Scalability**: How do increasing numbers of agents impact the quality of solution?

Learn from the environment

- Anderson & Lebiere:
 - Demonstrations of learning across Squire's (1992) taxonomy of human memory and learning
- Evaluation focus:
 - Functional impacts of learning
- Measures:
 - Performance measures (faster performance with learning)
 - Changes in knowledge capacity and knowledge utilization due to learning
 - Domain-specific measures to demonstrate qualitative changes in capability

Exhibit self-awareness & sense of self

- Anderson & Lebiere:
 - Focus on implicit learning
- Evaluation focus:
 - Enumeration of functional roles of "consciousness"
- Measures:
 - Adaptivity and robustness may include elements of self-awareness?

Conclusions

- Coal
 - Community currently lacks convincing tools to demonstrate (empirically, scientifically) the (assumed) value of cognitive architectures
 - Lack of empirical demonstrations to substantiate claims is a serious hole in the cognitive-architecture narrative
 - Metric definition is hard, especially for complex domains
- Gold
 - Functional emphasis of Soar is beneficial in helping define metrics
 - There is some low-hanging fruit (incrementality, knowledge capacity)
 - We can do better... and communicate empirical results

