Transfer Learning Using Soar

Joseph Xu with John Laird and Sam Wintermute 5/27/2007

Outline

- Year 2 Transfer Learning Project
 - General Game Player
 - Games
- Our approach to transfer learning
- Nuggets and coals

Year 2 Transfer Learning

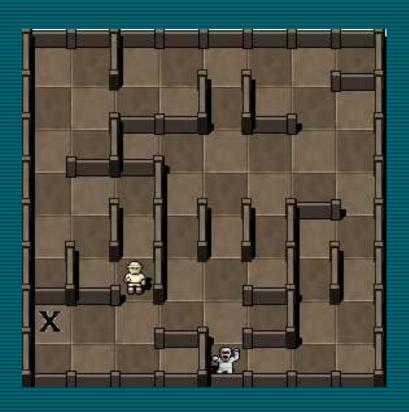
- General Game Player platform as exclusive simulation/evaluation environment
- Focus on higher levels of transfer (composition, abstraction, generalization, reformulation, differing)
- Source-Target evaluation paradigm remains the same
 - Spend time studying and solving some Source problems
 - Demonstrate improved learning performance on the Target problem

General Game Player

- Maintained by Stanford Logic Group
- Game Description Language (GDL) + Game Manager
 - GDL description gives you everything you need to know to play a game
 - All game rules + Initial conditions
 - Game Manager is an Internet server that hosts gameplay
 - Maintain state of a game

Characteristics of GDL Games

- Perfect information
 - Agent "has" all the knowledge it can ever want about the game
 - Cuts down on potentially transferrable knowledge
- Deterministic
 - Internal simulation is straightforward
- Finite
 - Limited number of symbols, states



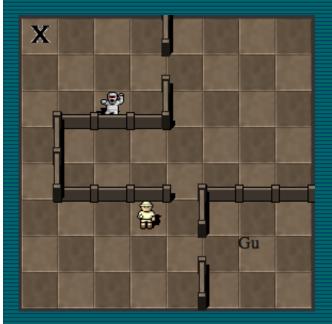
Example GDL Rules

Year 2 Games

- Mummy Maze
 - Explorer has to get to exit
 - Mummy chases explorer 2 steps for every step explorer takes
 - Mummy's choice of moves deterministic
 - Always move toward explorer
 - Enriched game structure and interactions
 - Weapons and items

Year 2 Games

- Escape (MM variant)
 - No mummy, instead there are obstacles
 - Explorer must obtain items to overcome obstacles
 - Items can be combined


- Rogue (MM variant)
 - Loosely based on Nethack
 - Navigate a set of rooms looking for a prize
 - Weapons, armor, items, monsters

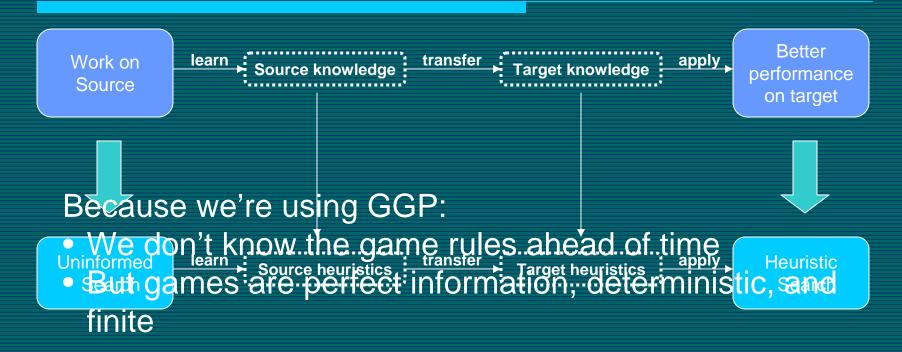
- Build
 - Build a structure as high as possible with various materials
 - Focuses on nonlinear interactions between combined materials
 - Not situated in a 2d grid world like others

Transfer Level 6 Example

Source 1: Explorer must kill mummy with gun

Source 2: Explorer must kill mummies with grenade

Target: Explorer must use guns or grenade to kill mummies


Outline

- Year 2 Transfer Learning Project
 - General Game Player
 - Games
- Our approach to transfer learning
- Nuggets and coals

Transfer Paradigm

How do we do this in Soar?

Uninformed Search in Soar

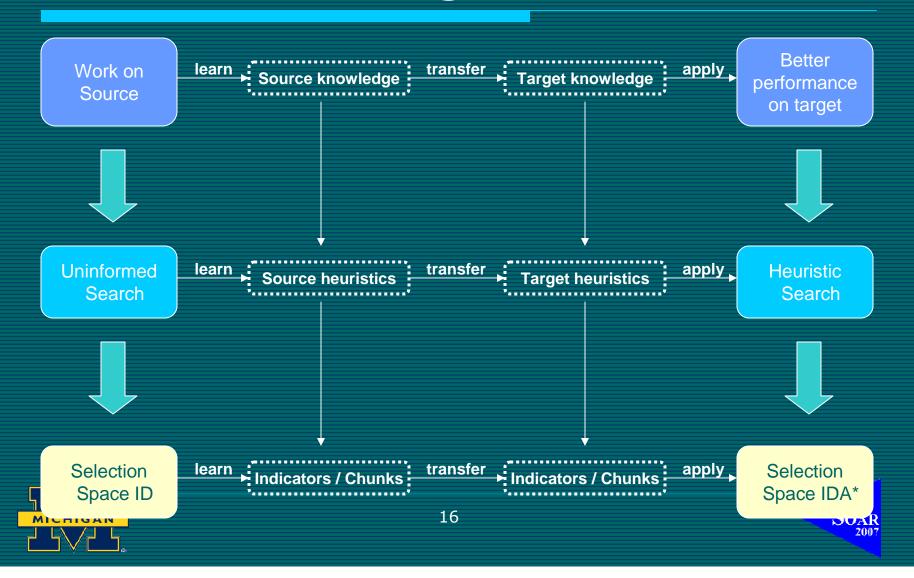
- Automatically translate GDL rules into Soar productions
 - Allows Soar to simulate game completely internally
 - Use the selection space mechanism to do internal look-ahead
 - Equivalent to depth-first search of game tree
 - Modify to use iterative deepening for improved performance

Learning Heuristics

- Chunking
 - What the agent should do in a particular state
- Rule relaxation
 - Distance to goal estimates
 - Manhattan distance
- Solution trace analysis
 - Evaluate accuracy of other heuristics
 - Learn positive and negative indicators for how good a state is
 - Positive: picking up the gun, killing the mummy
 - Negative: losing health, wasting a bullet

Heuristic Searching in Soar

- A* is an optimal heuristic search
 - f(n) = g(n) + h(n)
 - Uses exponential amount of memory
 - Abuses Soar's working memory
- Use iterative deepening A*
 - Only requires substate stack as memory
 - Cut off by f(n) rather than depth


h(n) heuristic

- Combination of relaxed distance estimates and state indicators
 - Encourages searching further on more promising paths
- Might not be admissible, so not guaranteed optimal solutions

Transfer Paradigm

Transferring Knowledge

- All knowledge has implicit assumptions about their native domain
- ☐ If those assumptions are violated, the knowledge is no longer useful
- Transfer is the attempt to modify or generalize knowledge to apply to different domains

Transferring Knowledge

- The knowledge we will be transferring are the heuristics learned in the source
- Some heuristics are general enough to transfer for free
 - Most game scenarios are set in a 2d grid world
 - Manhattan distance

Transferring Knowledge

- Others require making analogies between the source and target games
 - Rule level analogies
 - Try to map source GDL rules onto target GDL rules
 - Transfers relaxations, distance estimates
 - State level analogies
 - Try to map a game state in source to a game state in target
 - Transfers indicators, chunks

Nuggets and Coals

- Nuggets
 - Have a general paradigm for doing transfer in Soar
 - Should be able to handle a large variety of games as-is
- Coals
 - Still have a lot of work to do to demonstrate transfer
 - Transfer methods not proven/comprehensive

