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ADAPT

Adaptive Dynamics andActive Perception for Thought

The goal of the ADAPT project is to create a ratbait can
model its environment accurately in real time, asd that
model to perform tasks and interact with peoplegsiatural
language.

We are not interested in robot programming foripaldr tasks
but in investigating embodying cognition.

The emphasis ir ADAPT is on solving prcblems by
reformulation (reperception).

The structure of the ADAPT architecture is basedimyuistics.

We are building ADAPT by implementing the RS (Robot
Schemas) language in the Soar cognitive architectur

ADAPT uses a sophisticated, multimedia internalldronodel.
Comprehension is modeled as search to reconsheict t
environment within this world model.



Overview

Overall structure and philosophy
RS/Soar
Coherence Theory
Virtual World

Visualization and Semantics



Lessons Learned the Hard Way:

Everything is sensory-motor.
Peiceftion is ar active, goa-directec process
Robotics requires a high degree of true concurre ncy

Analyzing interactions is just too hard.



Active Perception

Active perception is top-down and goal-directedtrsd perception
becomes a problem solving process. This is in eashto the way
perception is usually approached in Al and cogaiseience.
Cognitive robotics means more than just using aitivg
architecture on a robot; it means treating rob@gs cognitive
domain, which includes treating perception as gob$olving.

Perception is the hard problem in robatics This distinguishes
robotics from tasks like chess.

We view perception as the representation problesrcdption is the
construction and modification of problem-solvingresentations.

Therepresentation problem is al leest hyperexponential (O22 ).



ADAPT’s Structure

[ RS / Soar ]
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ADAPT integrates distributed, concurrent control
with cognitive structures

The RS (Robot Schemas) language is the basis of the robotics
capabilities of ADAPT. RS is precise and mature.

RS is a CSP-type programming language for robotics, that
controls a hierarchy of concurrently executing sche

Joint(s)() = [Jpog)(x), Isels, x)(u), Imqtu)() ]
cO: (Jpos x) (JIset, x) (Jset, u) (Jmot1)

Jpog()(x) continuously reports the position of joint i on port X

Jmot(u)() accepts a signal on port u and applies it to the actuatonof joi

Jsef(s, x)(u) accepts a setpoint on port s and iteratively inputs gpjosion on
port X and outputs a motor signal on port u to drive the joint position to the
setpoint



A Sensory-motor Schema Hierarchy

Touch = [Tact()(v), Gmovev)(y), Joini(y)() ]

cl: (Tact v) (Gmove, V) (Gmove, y) (Joint)

Tact reports on tactile contact on the i-th join on its port v.

Gmove increments the setpoint of the joint actuator as long as iaget
no-contact signal on its port v.

Touch implements a guarded move of the i-th link.



RS has a Formal Semantics
P=(Q,L,X9J £ 1)where

Q Isthe set of states
L  is the set of ports
X= (X |1/L) isthe event alphabet for each port

XL={(,X)|1//L}I.e., adisjoint union of andX
O0: QxXL - 29 is the transition function

B= (B |1JL) B : Q - X is the output map for port
1029 IS the set of start states



RS has a Formal Semantics

The behavior of every RS schema is defined using port
automata. This provides precision to the semantics and also

a constructive means of reasoning about the behavior and
meaning of schemas.




Process Composition in RS

1. Sequential Composition: T = P; (. The process T behaves like the process Pountil that terminates,

and then behaves like the process @ (regardless of P s termination status).

2. Concurrent Composition: T = (P | §)°. The process T behaves like P and Q running in parallel and

with the input ports of one connected to the output ports of the other as indicated by the port-to-port
connection map ¢. This can also be written as T = ( ‘ Pi | for a set of processes indexed by [.
e d
3. Conditional Composition: T = P{v) : Q,. The process T behaves like the process P until that
terminates. If P aborts, then T aborts. If P terminates normally, then the value v caleulated by
P is used to intialize the process §, and T then behaves like Q, .

4. Disabling Composition: T = P#0Q. The process T behaves like the concurrent composition of P and
Q until either terminates, then the other is aborted and T terminates. At most one process can stop;

the remainder are aborted.

o

Svnchronous Recurrent Composition: T = P{v) :; Q,. This is a recursively defined as follows:
P:;Q=P:(Q;P:0Q).
6. Asynchronous Recurrent Composition: T = P{v) :: §,. This is recursively defined as follows:

P:Q=P:(Q|(P:Q)).

Operator Precedence: The operator precedence from loosest to tightest is as follows: Concurrent; Disabling;

Seqguential; Conditional; Synchronous Recurrent; Asynchronous Recurrent.



Implementation of RS in Soar
Schemas, facts, and hypotheses are nodes in a graph.
Links implement the composition operations, as well as other
relations, including deductive and evidential inference.

Automata that implement a schema are built as needed.

Y o-@ @
<) s



Advantages of RS

Formal Semantics

Complete Representation of Distributed Control
Maturity

Invariants to monitor tasks/environment

Disadvantages of R
No synthesis method
No cognitive plausibility

No learning

Goal: to use chunking to learn RS schemas



RS has been successfully used in factory automation.

_ QuickTime™ and a
Microsoft Video 1 decompressor
are needed to see this picture.

However, this was a hand coded planner using Allen’s
interval logic.



Coherence Theon

A Method of abductive inference for evidential imasg with a claim to
psychological plausibility

Represents evidence, facts and hypotheses in aaohaetwork. Each
of these can be incomplete and/or inaccurate.

Searches for a set of accepted (believed) hypatlibaesatisfies the
maximal weighted sum of constraints

Used by Johnson et al.: (unfinished)
Thagard: scientific discovery, jury decisions,ljem solving
Ranney & Thagard: students solving physics problem
Mead & Miller: perception of social relationships



| mplementation of Coherence Theory

Rather than use a connectionist approach, ADAPTeiments coherence
theory in Soar.

Evidence, facts and hypotheses are connected Isyramts of varying
types (deductive or evidential).

A model checker proves some of the hypotheses taubgalse. True
hypotheses ar@ccepted; false onefegected. Other hypotheses are
rardamly assgned initially.

Operators compute the amount of constraint satisfato be gained by

changing each hypothesis to the other set. Thethgpis with the
highest gain is switched. Repeat until local maxmreached.

Fast: typically under 250 ms.



Experiencein Cybersecurty Domain

DARPA-funded project with BBN Technologies and Adtem Labs.

Goal: To defend a network of > 30 hosts from insttieeats, catching at
least 50% of attacks with no more than 10% falsitipes, and response
In less than 250 ms.

Computer network is simulated in JESS.

Siccesfully hardles all scenerios from 2005 tests as well as tests from
a problem generator.

Fast and accurate. Hypothesis networks often >nbd@s, sometimes
> 500 nodes.

Red Team test to occur in late May, 2008.



Cybersecurity Exanple Hypothesis Network
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SoarSLAM Example

Sonar SLAM written in Soar. Runs on the Pioneer robots
and simulator. Successfully maps floors of office buildings.

T e b T T ™

o 1 Q_,.i.
| - | | Dead reckoning errors
(a) (b)
. accumulate. The empty r
_j rectangle shows where the
PN robot thinks it is.
P | »
) (l‘.' S (:?l) o




SoarSLAM Example

Sonar SLAM creates local maps consisting of wall segments.
Hypotheses are the robot’s position relative to local maps.

] T - LF I ATTAS
cths i __________________ WORLD +© | Prirt op | | Print stack



SoarSLAM Example
SoarSLAM switches local maps and resets the odometry.

] SoarDebugger!in||ava-remote SoarRobot ISl

File Edt Primt Commands Debuglevel Demos Layout Agerts Kernel Help

2092: o: 02025 {turn-right) .
2093: ==15. 514019 {eperakor fiz)

Wall w4 iz in frent of the Tobot
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Lesson nnd Queston

This simple example shows that robotics algoritbarsbe realized in a
cognitively plausible manner within a cognitive laitecture.

Is this cognitive science?



The basic loop of ADAPT is:

1 - check Soar's output link to see if there are any commanklishwnay be
either motion commands for the robot or modeling commands#i® World
Model,

2 - blend the motion commands that are to be sent to the robot,

3 - send all robot commands both to the robot and to the virnladt in the
World Model,

4 - send all other commands to the World Model,

5 — periodically (every tenth of a second) fetch data fromrtieot to be put
into Soar's working memory,

6 - periodically fetch data from the Vision System, compar®e visual data
from the World Model, and put any significant differencegoirSoar's
working memory.



ADAPT’s Mental Model

Ogre3D Video game platform: physics and graphics

camg_sensor [800 x 600]

X1207.32 | RI-0.00
Yi7413 | PlE00 |
25 Zlz2s | Y4450

FPS[26 | Real Time(35.00 | SimTime[2450 | Pause Timel000 | lIterations[1230 | RUNNING

Goal: to create a working copy of the environment



ADAPT’s Mental Model

RS/Soar

(obiect “type chair “id 143 ...)

H-.H |
H‘-.. '|II

(object “type wa.li “color 'Hblack id 122)

Rendering

Physical World

.HM I'.III
OpenCV input \ HI\
N

\ \ Semantics

Virtual World




Videos showing the Modeling Process

QUiCkTimeTM and a YUV4%JI(§:§JIETEJ;’:60"£;I?SSOI'
H263 decompr.ess(.)r are needed to see this picture.
are needed to see this picture.



Virtual World

Reconstruction currently uses a hand-built library of
objects and schemas.

Ogre Is used for:
motion planning in dynamic environments

predictive visiol
language comprehension.

ADAPT searches to reconstruct the environment. This
approach is used for recall, instead of data chunking.



Predictive Vision

Actual view Expected view

Sum-of-squares difference exceeds threshhold.
Soar operator proposed to focus on difference.

EXxpensive vision operations are goal-dependent,
greatly reducing their frequency of use.



Visualization for Semantics

Comprehension requires visualization.

ClGazebo : simulation control = O x
Controls

[x] dbsewercam i guicam : usercamo
[ ] Pioneer2DX : sonar : robot1

[ ] Pioneer2DX : power : robotl

[ ] Pioneer2DX : position : robot1 .
[1 sicktMs2z00 : fiducial : laserl [=] siddtharth@siddtharth-laj

Controls

H 0 gui(alin [usercamo]

[1
[l
[x]

Controls
|

time 81.500

81.500

Observer camera Neighborhood camera



Visual Context

The Neighborhood
camera moves with the
robot and defines the
visual context.

The circle defines
“near”; it iIs movable
But of a fixed size.

If the robot is told to move near the small red block,
it will plan motions to take it inside the black circle.



The Visual Context is
Associated with the Task

If the robot is then told
to pick up the small red
block, the new task
changes the context.

The new context is
smaller, causing the
camera to zoom in.




Changing the Visual Context

In the new context, the
robot is no longer near
the small red block,
because although
“near” is visually the
same neighborhood, it
denotes a much smaller
region.

If the robot is told to pick up the small red block, it
must move inside the black circle, because picking up
something requires being closer than moving neatr it.



Tasks Determine Contexts

Visualization uses the virtual camera to define a
context within which terms have a single meaning.

This is intended to fit NL-Soar’'s comprehension
mechanism.

A ADAPT must searc
N " among contexts

Instead of among
meanings for terms.

This approach could conceivably be used for terms that
are not inherently physically grounded.



Cognitive Semantics

The idea of using visualization for linguistic semantics
IS not new. Langacker’s Cognitive Grammar described

a way to do this.

John walk. TR

[ R S Holmqvist partially
‘ ‘ — || — Implemented this
11 11 grammar, but didn’t

‘*g’ﬁ ;-j"hﬂ_ finish.

f !

B

Our approach improves the methodology because the
virtual world is 3D and dynamic.



Cognitive Plausibility and Soar Theory

Duncker: “Problem solving consists of a sequence of
phases; each phase is a reformulation of the problem
(Newell).”

Polk & Newell: “We propose that the central processes
In deductive reasoning are linguistic (encod
reencoding, and generation) rather than reasoning-
specific skills.”

“... for deduction tasks for which the necessary
iInformation is provided verbally, the heart of deduction
Involves repeatedly reencoding the problem, ...”



Summary

ADAPT addresses necessary choices for using Soar in robotics:

Providing computational facilities for concurrency and
distributed control: RS

An methodology for perceptic Reformulation base
on linguistic reencoding

A fast method of reasoning and sensory fusion:
Coherence theory

Representing comprehension as search:
Gaming platform as virtual world



Status

Individual capabilities have been demonstrateak
RS in Soar for basic navigation
Coherence theory in navigation, cybersecurity
Modeling vision data in Ogre in real time
Use of visual contexts for semantics in navige
Predictive vision attends to and models changes

But: ADAPT is still in three big pieces coaL
Everything is hand built
RS/Soar, vision, NL-Soar: what are the constraints?
A big problem is the virtual world software



Thanks!
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