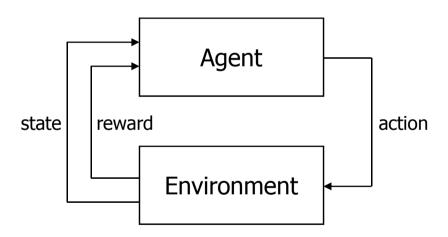
Learning to Control Internal Memory


Nicholas Gorski

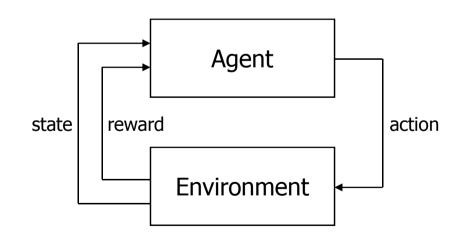
28th Soar Worskhop May 6, 2008

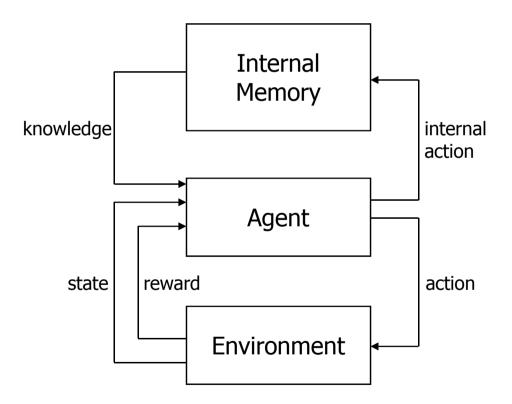
Learning Control in AI

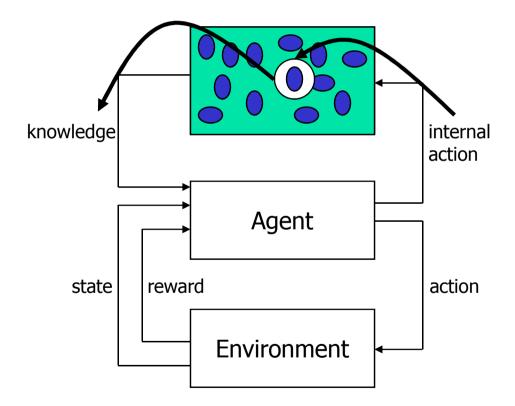
 Central problem in reinforcement learning: selecting actions in environment so as to maximize reward

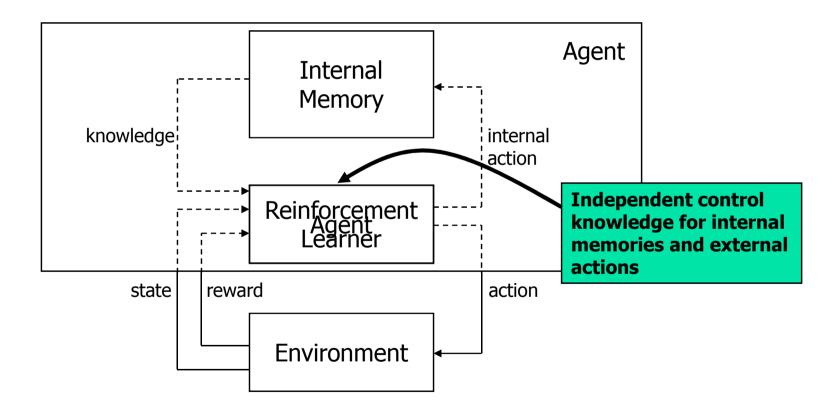
No internal state under agent's deliberate control

Memory & Learning in Cognitive Architectures


- Cognitive architectures do have additional internal memory mechanisms
 - Procedural, semantic, and episodic memories
- Learning in cognitive architectures
 - Adjusts control knowledge over actions in environment
 - Implicitly learns control over internal mechanisms
 - Focus: external behavior, not control of internal memory




Learning to Control Internal Memories


- What happens when a simple agent can learn control over an internal memory?
 - Relatively unexplored
 - Peshkin, Meuleau, Kaelbling ICML '99
 - Lanzi SAB '00
 - Factorization gives functional benefit?
 - Memory treated as part of state
 - Simplifies learning action selection in environment
- Might inform our knowledge of likely memory mechanisms

Research Directions

- 1. Enumerate dimensions of design space for memory mechanisms
 - Informed by cognitive psychology
- 2. Empirically evaluate design spaces
 - Using parameterized domains that allow for crosscomparisons between designs
- 3. Determine how domain characteristics impact performances of different designs
 - Identify classes of problems on which certain implementations apply / don't apply

Dimensions of Design Space

- Size
 - Of memory mechanism
 - Finite
 - Infinite
 - Of memory elements
 - Single symbol
 - Tuple
 - Chunk
- Internal representation
 - Slot-based
 - General-purpose
 - Special-purpose
 - Combinatorial working memory

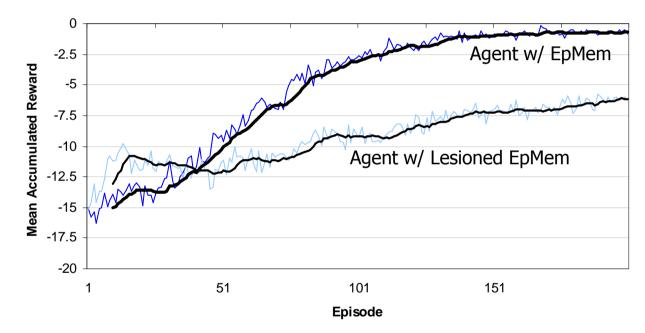
- Amodal / Multimodal
- Decay & Persistence
- Interference
 - Proactive
 - Retroactive

Exploratory Empirical Work

- Preliminary work with
 - very simple tasks
 - very simple memory mechanisms
- Goal: determine if learning to control memory is deserves further investigation
- Two tasks
 - long-term memory in a grid world
 - episodic memory with paired associate recall

Long-term Memory Task

- Mechanism
 - Automatic storage of salient symbols to memory
 - Available actions: retrieve <x>, maintain, noop
- Grid world task where optimal performance required
 - Navigating to a special location and observing an event
 - Retrieving and maintaining memory while navigating to corresponding goal location
- Results
 - Agent learned to control memory
 - Learned to selectively retrieve task-relevant knowledge
 - Learned to control memory over delayed retrievals



Episodic Memory Task

- Motivation: initial exploration of learning to control an episodic-like (associative) memory mechanism
- Inspiration: paired associate recall
 - I say "X", you ask "what is paired with X?"
 - I say "X is paired with 2", you do action correlated with "2"
 - Later, I say "X", you think "2" and do act correlated with "2"
 - Pairings randomized every episode
 - 2 presentations of each pair every episodie
- Goal
 - when agent doesn't know paired symbol, it asks for it
 - when agent knows paired symbol, retrieves it from memory

Episodic Memory Task Results

- Results:
 - + learned paired associative recall task
 - failed to learn more difficult, temporally extended task

Other Research Questions

- What 2nd order phenomena occur in agents' behaviors as a result of learning?
 - Rehearsal \rightarrow limited persistence
 - Attention \rightarrow interference
 - Or do they require additional mechanisms?
- Is Intrinsic Reward necessary to learn well?
 - Partial observability can lead to rewarding loops that prevent agent from fully exploring domain
- Can agent learn over simultaneous actions?
 - Or are composite actions necessary?

Summary

- Exploring effects of learning over internal memory mechanisms
- May inform work in cognitive modeling & architecture design
- Early work... no nuggets or coal yet.

