
Randolph M. Jones

Jacob Crossman, Christian Lebiere, Lisa Scott Holt,

Improving HBM Affordability: A High-Level
Language for Cognitive Architectures

Jacob Crossman, Christian Lebiere, Lisa Scott Holt,
Gil Barrett, David Ray, Kyle Aron, Nick Piegdon

Funded by the Office of Naval Research (ONR) Contract N00014-05-C-0245

What is HLSR?

� High Level Symbolic Representation

� A language for knowledge encoding

� The language is:

• Architecture independent

• Domain independent

• High-level HLSR KnowledgeHLSR

Dev Tools
behavior template
 SetupAmbush(Me,TerrainReasoning,
 PlanningPolicy) {
using interface TerrainReasoning
 preferences {
intantiate PlanningPolicy

 }
application {
sequence {
abstract behavior ObtainPlan
behavior MoveIntoPosition(Me)

 }

User GUI

DeveloperEnd User

September 21, 2007 | Soar Technology Proprietary | Slide 2

• High-level

• Designed to support reuse

� Target users:

• Behavior developers

• End user tool developers

HLSR Knowledge

Compiler for
ACT-R

Architecture Code
(ACT-R)

Compiler for Soar

Architecture Code
(Soar)

HLSR
Libraries

ACT-R

Environment

P
ro

du
ct

io
ns

(B
as

al
 G

an
gl

ia
)

Retr ieval Buffer
(VLPFC)

Matching (Striatum)

Selection (Pallidum)

Execution (Thalamus)

Goal Buffer
(DLPFC)

Visual Buffer
(Parietal)

Manual Buffer
(Motor)

Manual Module
(Motor/Cerebellum)

Visual Module
(Occipital/etc)

Intentional Module
(not identified)

Declarative Module
(Temporal/Hippocampus

)

Soar

Primary accomplishments prior to 2007

� Review of cognitive/intelligent agent architectures

� Design of initial HLSR “virtual machine” and language

� Implementation of compiler parser and code
generation

� Full implementation of code generation for Soar

September 21, 2007 | Soar Technology Proprietary | Slide 3

� Full implementation of code generation for Soar

� Partial implementation of code generation for ACT-R

� Initial comparative study of ACT-R, Soar, and HLSR
programming

� Internal Funding: Developed an IDE and debugger for
HLSR

Primary activities in 2007

� Finished implementation of code generation for ACT-R (for 2006
HLSR definition)

� Completed design and implementation of code-based metrics
tools for HLSR, Soar, and ACT-R

� Designed I/O language elements in HLSR

� Designed and partially completed implementation of ACT-R and
Soar code generation for new language elements

September 21, 2007 | Soar Technology Proprietary | Slide 4

Soar code generation for new language elements

� Created TankHLSR models using the Tank Soar framework –
DEMO will show this working
• Evaluated these models using HLSR’s metrics

� HLSR evaluation
• Designed and executed user study to evaluate HLSR

• Created algorithms for automated evaluation metrics

• Improved understanding of HLSR strengths and weaknesses

• Improved understanding of Soar and ACT-R architectural differences

Primary activities in 2008

� Final report for current ONR funding

� Outline and draft sections of potential journal paper

September 21, 2007 | Soar Technology Proprietary | Slide 5

Comparative user study

� Goal: To evaluate potential advantages of HLSR over
Soar and ACT-R for novice programmers

� Subjects:

• Junior and senior computer science majors from Carnegie
Mellon University plus a couple of graduate students

September 21, 2007 | Soar Technology Proprietary | Slide 6

• Cognitive modeling and AI programming experience not
required

• Volunteers randomly assigned to groups (ACT-R, Soar, HLSR)

� Design

• 2 hour interactive tutorial (with exercises) in language
followed by 1 hour exam

• Each group learned only one language

• ACT-R N=8; Soar N=6; HLSR N=9

Tutorials, exercises and exam problems

� Developed separate tutorials with interactive
exercises for each language

• All tutorials covered the same basic concepts

• Exercise were the same across languages

� Kept exam problems simple

September 21, 2007 | Soar Technology Proprietary | Slide 7

• Subjects were novices

• Not much time to learn or practice language before exam

� Designed exam problems to gauge:

• Ability to understand existing code, including how it will
behave dynamically (when executing)

• Ability to make changes to existing code

• Ability to design behavior using specific language constructs

Data Collection and Analysis

� Subjects self-recorded time spent on each exam
problem (and sub-problem)

� Subject submitted all written work and solutions

� Experimenters coded various aspects of solutions

• Quality, correctness, and format of program design

September 21, 2007 | Soar Technology Proprietary | Slide 8

• Quality, correctness, and format of program design

• Quality and correctness of program code

• Evidence of understanding of language concepts

• Correct use of language-specific constructs

� Exams coded by language experts

• ACT-R: Lebiere; Soar: Jones; HLSR: Crossman

• Initial coding followed by group discussions and analysis for
consistency

Hypotheses

� Major differences between groups were not expected
• The problems were very simple

• Hopefully some trends would still be visible

• The problems were built from a Soar tutorial, and may have
been biased toward “Soar-like thinking”

� Expectations

September 21, 2007 | Soar Technology Proprietary | Slide 9

� Expectations
• Tasks dealing with complex logic, sequences/loops, and
declarative structures should be easier in HLSR (fewer
mistakes, shorter time) [not confirmed]

• Because they are at a higher level of abstraction, HLSR
constructs should be used more often in design than ACT-R
and Soar constructs [positive trend, n too small for ΧΧΧΧ2]

• Time taken to complete some tasks should be reduced in
HLSR [confirmed significant difference]

HLSR I/O

� Why I/O over Other Language Features?

• I/O is critical for almost any useful model

• Practical: I/O can be implemented in the limited time remaining

� Observation: Both Soar and ACT-R

• Treat I/O structure the same as declarative memory

• Have I/O modules that run in parallel to decision cycle

September 21, 2007 | Soar Technology Proprietary | Slide 10

• Have I/O modules that run in parallel to decision cycle

� Approach: HLSR I/O leverages the relation – relations can be
“sensed” (input) or “externalized” (output)

• Conceptually input relations form an input pool

• Input relations are “sensed” when the model sensors detect instance
of what the relation represents

• Output relations are visible to motor system

• Output relations exist in declarative memory so output processes
can be queried (meta reasoning over motor process)

Metrics – Results for Tank Model

Metric HLSR ACT-R Soar

V
o
lu
m
e

LOC 134 780 (5.8x) 337 (2.5x)
Tokens 516 1417 (2.75x) 892 (1.73x)

E
n
c
a
p
s
.

Objects per
construct

2.9 objects/construct

(construct = relation w.
cond., transform, AT)

5.8 chunk types/goal

2.3 chunk types/rule

4.3 objs/operator

4.13 objs/production

Attributes per 2.4 attr/construct 14.2 attributes/goal

4.8 attributes/rule

7.3 attr/operator

7.7 attr/production

September 21, 2007 | Soar Technology Proprietary | Slide 11

� Note we started with Soar model (optimal Soar model)

E
n
c
a
p
s
. Attributes per

construct 4.8 attributes/rule 7.7 attr/production

C
o
m
p
le
x
ity

Procedural
Constructs

19 constructs

36 statements

6 goals

54 rules

9 operators

45 productions

(36 are elaborations)

Tests 90 tests total

4.74 tests/construct

210 tests total

34.8 attr tests/goal

3.9 attr tests/rule

100 logical tests total

1.89 tests/operator

2.22 tests/production

Average Fanning 4 fanning/act. table

3 fanning/transform

2.15 fanning/statement

1.67 fanning/goal

9.2 fanning/rule

0.67 fanning/operator

6.6 fanning/production

HLSR lessons learned in 2007

� HLSR’s “activation table” construct appears to be quite powerful (especially in
terms of saving lines of code), and was of particular interest in the user study

� HLSR’s relation/goal/fact constructs withstand formalization and compilation in
ACT-R and Soar, and work will in a variety of implemented models
• Difficult implementation issues sometimes, but appears to be at a good level of

abstraction
• Provides a uniform construct that encompasses various ACT-R and Soar modeling

patterns (Soar i-support, ACT-R retrieve-best, goal/belief maintenance)

� Demonstrated 2-3x code reduction in small problem domains
• Reductions increased with move to more complex problems (using I/O)

September 21, 2007 | Soar Technology Proprietary | Slide 12

• Reductions increased with move to more complex problems (using I/O)
• More reduction should be possible with language features that have been partially

designed but not implemented

� User study was not conclusive in all respects, but
• HLSR subjects spent less time on some problems (with comparable correctness) than

ACT-R and Soar subjects
• Differences between design and code appear to be smaller for HLSR

� There are interesting low-level modeling differences that Soar and ACT-R
languages constrain modelers to use.
• HLSR provides a method for formalizing these differences and encouraging consistent

modeling solutions.
• Should allow improved consistency and comparison of models within and across

architectures.

HLSR issues identified in 2007

� The transform language construct is too limited
• Does not cover some of the more flexible modeling patterns in Soar
and ACT-R

• Does not really make difficult procedures much easier to write

• RESPONSE: Divide transform into two separate constructs. One for
simple sequences of actions, others to support conditions, looping,
parallelism, and aspect-oriented programming

September 21, 2007 | Soar Technology Proprietary | Slide 13

parallelism, and aspect-oriented programming

� The relation language construct should have slightly different
semantics
• Current implementation makes asserted facts immutable
(ala ACT-R), which leads to programming at an unnecessary level of
detail

• Needs an inheritance system for richer declarative knowledge
specifications

� Design and implementation of parallelism needs to be enhanced
and improved

