&< SoarTechnology

Thinking inside the box.

Improving HBM Affordability: A High-Level
Language for Cognitive Architectures
Randolph M. Jones
Jacob Crossman, Christian Lebiere, Lisa Scott Holt,

Gil Barrett, David Ray, Kyle Aron, Nick Piegdon
Funded by the Office of Naval Research (ONR) Contract N0O0O014-05-C-0245

4< SoarTechno

_A Thinking inside the bog.gv
Carnegie Mellon

What is HLSR?

High Level Symbolic Representation
A language for knowledge encoding
The language is:

Architecture independent

Domain independent

High-level

Designed to support reuse
Target users:

Behavior developers

End user tool developers

September 21, 2007 | Soar Technology Proprietary | Slide 2

HLSR

Libraries

End User

~ User GUI

Developer

Dev Tools

2 HLSR Knowledge

4) 4)
Compiler for .
ACT-R Compiler for Soar
N\ NS J
Architecture Code Architecture Code
(ACT-R) (Soar)

b
A2 Soar echnolog

Primary accomplishments prior to 2007

Review of cognitive/intelligent agent architectures
Design of initial HLSR “virtual machine” and language

Implementation of compiler parser and code
generation

Full implementation of code generation for Soar
Partial implementation of code generation for ACT-R

Initial comparative study of ACT-R, Soar, and HLSR
programming

Internal Funding: Developed an IDE and debugger for
HLSR

b
September 21,2007 | Soar Technology Proprietary | Slide 3 S qurmghﬂ@[]gv
inking inside the box.

Primary activities in 2007

Finished implementation of code generation for ACT-R (for 2006
HLSR definition)

Completed design and implementation of code-based metrics
tools for HLSR, Soar, and ACT-R

Designed I/O language elements in HLSR

Designed and partially completed implementation of ACT-R and
Soar code generation for new language elements

Created TankHLSR models using the Tank Soar framework -
DEMO will show this working
Evaluated these models using HLSR’s metrics
HLSR evaluation
Designed and executed user study to evaluate HLSR
Created algorithms for automated evaluation metrics
Improved understanding of HLSR strengths and weaknesses
Improved understanding of Soar and ACT-R architectural differences

b
September 21,2007 | Soar Technology Proprietary | Slide 4 S quf]k”ﬂghﬂq’mgv
inking inside the box.

Primary activities in 2008

Final report for current ONR funding
Outline and draft sections of potential journal paper

4
September 21,2007 | Soar Technology Proprietary | Slide 5 S qurTEEhﬂ@U(]V
inking inside the box.

Comparative user study

Goal: To evaluate potential advantages of HLSR over
Soar and ACT-R for novice programmers

Subjects:
Junior and senior computer science majors from Carnegie
Mellon University plus a couple of graduate students

Cognitive modeling and Al programming experience not
required
Volunteers randomly assigned to groups (ACT-R, Soar, HLSR)

Design
2 hour interactive tutorial (with exercises) in language
followed by 1 hour exam
Each group learned only one language

ACT-R N=8; Soar N=6; HLSR N=9

b
September 21,2007 | Soar Technology Proprietary | Slide 6 S quf]k”ﬂghﬂq’mgv
inking inside the box.

Tutorials, exercises and exam problems

Developed separate tutorials with interactive
exercises for each language
All tutorials covered the same basic concepts
Exercise were the same across languages

Kept exam problems simple
Subjects were novices
Not much time to learn or practice language before exam

Designed exam problems to gauge:

Ability to understand existing code, including how it will
behave dynamically (when executing)

Ability to make changes to existing code
Ability to design behavior using specific language constructs

b
September 21,2007 | Soar Technology Proprietary | Slide 7 S qurmghﬂ@[]gv
inking inside the box.

Data Collection and Analysis

Subjects self-recorded time spent on each exam
problem (and sub-problem)

Subject submitted all written work and solutions

Experimenters coded various aspects of solutions
Quality, correctness, and format of program design
Quality and correctness of program code
Evidence of understanding of language concepts
Correct use of language-specific constructs

Exams coded by language experts
ACT-R: Lebiere; Soar: Jones; HLSR: Crossman

Initial coding followed by group discussions and analysis for
consistency

b
September 21,2007 | Soar Technology Proprietary | Slide 8 S qurmghﬂ@[]gv
inking inside the box.

Hypotheses

Major differences between groups were not expected
The problems were very simple
Hopefully some trends would still be visible

The problems were built from a Soar tutorial, and may have
been biased toward “Soar-like thinking”

Expectations

Tasks dealing with complex logic, sequences/loops, and
declarative structures should be easier in HLSR (fewer
mistakes, shorter time) [not confirmed]

Because they are at a higher level of abstraction, HLSR
constructs should be used more often in design than ACT-R
and Soar constructs [positive trend, n too small for X?]

Time taken to complete some tasks should be reduced in
HLSR [confirmed significant difference]

b
September 21,2007 | Soar Technology Proprietary | Slide 9 S qurTEEhHUtJUUV
inking inside the box.

HLSR 1I/0

Why 1/0O over Other Language Features?
|/0 is critical for almost any useful model
Practical: I/O can be implemented in the limited time remaining

Observation: Both Soar and ACT-R

Treat I/O structure the same as declarative memory

Have I/O modules that run in parallel to decision cycle
Approach: HLSR I/O leverages the relation - relations can be
“sensed” (input) or “externalized” (output)

Conceptually input relations form an input pool

Input relations are “sensed” when the model sensors detect instance
of what the relation represents

Output relations are visible to motor system

Output relations exist in declarative memory so output processes
can be queried (meta reasoning over motor process)

b
September 21,2007 | Soar Technology Proprietary | Slide 10 S qurTEEhHUtJUUV
inking inside the box.

Metrics - Results for Tank Model

Metric HLSR ACT-R Soar
<
S |Loc 134 /80 (.80 337 @sx0
c
™ .75x .73x
2 | Tokens 516 1417 @750 892 .73
Objects per 2.9 objects/construct 5.8 chunk types/goal 4.3 objs/operator
5"' construct (construct = relation w. 2.3 chunk types/rule 4.13 objs/production
8 cond., transform, AT)
E-O” Attributes per 2.4 attr/construct 14.2 attributes/goal 7.3 attr/operator
construct 4.8 attributes/rule 7.7 attr/production
Procedural 19 constructs 6 goals 9 operators
statements rules productions
Constructs 36 54 rul 45 producti
Q (36 are elaborations)
3 | # Tests 90 tests total 210 tests total 100 logical tests total
=i 4.74 tests/construct 34.8 attr tests/goal 1.89 tests/operator
Q 3.9 attr tests/rule 2.22 tests/production
< Average Fanning 4 fanning/act. table 1.67 fanning/goal 0.67 fanning/operator
3 fanning/transform 9.2 fanning/rule 6.6 fanning/production
2.15 fanning/statement

Note we started with Soar model (optimal Soar model)

b
September 21,2007 | Soar Technology Proprietary | Slide 11 S Soar Techno gy

Thinking inside the box.

IS
HLSR lessons learned in 2007

HLSR’s “activation table” construct appears to be quite powerful (especially in
terms of saving lines of code), and was of particular interest in the user study
HLSR’s relation/goal/fact constructs withstand formalization and compilation in
ACT-R and Soar, and work will in a variety of implemented models
Difficult implementation issues sometimes, but appears to be at a good level of
abstraction
Provides a uniform construct that encompasses various ACT-R and Soar modeling
patterns (Soar i-support, ACT-R retrieve-best, goal/belief maintenance)
Demonstrated 2-3x code reduction in small problem domains
Reductions increased with move to more complex problems (using I/0)
More reduction should be possible with language features that have been partially
designed but not implemented
User study was not conclusive in all respects, but
HLSR subjects spent less time on some problems (with comparable correctness) than
ACT-R and Soar subjects
Differences between design and code appear to be smaller for HLSR
There are interesting low-level modeling differences that Soar and ACT-R
languages constrain modelers to use.
HLSR Isrovides a method for formalizing these differences and encouraging consistent
modeling solutions.
Should allow improved consistency and comparison of models within and across
architectures.

4
September 21,2007 | Soar Technology Proprietary | Slide 12 S qurTEEhﬂ@U(]V
inking inside the box.

HLSR issues identified in 2007

The transform language construct is too limited

Does not cover some of the more flexible modeling patterns in Soar
and ACT-R

Does not really make difficult procedures much easier to write

RESPONSE: Divide transform into two separate constructs. One for
simple sequences of actions, others to support conditions, looping,
parallelism, and aspect-oriented programming

The relation language construct should have slightly different
semantics

Current implementation makes asserted facts immutable
(ala ACT-R), which leads to programming at an unnecessary level of
detail

Needs an inheritance system for richer declarative knowledge
specifications

Design and implementation of parallelism needs to be enhanced
and improved

b
September 21,2007 | Soar Technology Proprietary | Slide 13 S qurmghﬂ@[]gv
inking inside the box.

