T
$ Soar [echnology

Thinking inside the box

l"

Cost-Effective Conversion of
Large Soar 7 Systems to Soar 8

Randolph M. Jones
Soar Technology

Top-Level Problem

Someday we would really like to convert TacAir-Soar
to use Soar 8.
Notable issues:

TacAir-Soar is implemented in Soar 7

TacAir-Soar uses the “Michigan Approach” to implement
(some of) its goals

TacAir-Soar includes a number of programming patterns that
Soar 8 was specifically designed to prevent from working

y-
22 June 2005 | © 2005 Soar Technology, Inc. | Slide 2 COMPANY PROPRIETARY S SQHKI' Tﬂghﬂﬂblﬂﬂv
INKINg Inside the box.

Challenges For The Conversion

In Soar 7, it was easy to create operators that
contained arbitrarily long sequences of application
rules

...and so we did

Soar 7 operators are guaranteed not to be deselected until:
They are deliberately terminated, AND
The Soar decision cycle reaches quiescence
Soar 8 operators are deselected as soon as their proposal
conditions are no longer matched

For many TacAir-Soar operators, this means that the operator
would get deselected before the chain of applications gets a
chance to finish

y-
22 June 2005 | © 2005 Soar Technology, Inc. | Slide 3 COMPANY PROPRIETARY S qur Tﬂghﬂﬂt)lﬂﬂv
INKINg Inside the box.

Challenges For The Conversion

Using the Michigan Approach in Soar 7 makes it easy
to create operators that stay selected for very long
times (hours, even)

...and so we did

But operators in Soar 8 are much “fussier”, in order to prevent
the knowledge in subgoals from becoming inconsistent with
the knowledge in supergoals

In a Soar 8 implementation of the Michigan Approach, you
need proposal conditions to start off a long-lasting
operator/goal, but you also need proposal conditions that
will re-propose the operator/goal so it can “pick up where it
left off” if and when it is interrupted

Re-engineering all of the TacAir-Soar operators in this way is
prohibitively expensive

y-
22 June 2005 | © 2005 Soar Technology, Inc. | Slide 4 COMPANY PROPRIETARY N SQHKI' Tﬂghﬂﬂblﬂﬂv
INKINg Inside the box.

An Engineering-Oriented Solution

If it makes the conversion cheaper, we are willing to
use “non-kosher” solutions
...and hopefully fix and refactor later

One of the strategies for implementing the Michigan
Approach in Soar 8 is to move subgoal-related
information to the top state (so the operators can
take up where they left off when interrupted)

The alternative “Forest of Goals” approach also maintains all
subgoal information on the top state

Key insight:
We can use a couple of tricks to make goals in the “Forest of

Goals” approach behave (at least mostly) like Michigan-
Approach operators behaved in Soar 7

y-
22 June 2005 | © 2005 Soar Technology, Inc. | Slide 5 COMPANY PROPRIETARY S SQHKI' Tﬂghﬂﬂblﬂﬂv
INKINg Inside the box.

Basics of the Approach

Any operator that really only does one quick task can remain an
operator

Any operator that assumes it is going to persist for more than
one application must be converted to a “persistent goal”

A persistent goal gets installed into the “goal forest” by an operator,
using the original operator’s proposal conditions

A persistent goal gets removed from the “goal forest” by an
operator, using the original operator’s termination conditions

Operator preferences are handled on a case by case basis (but
mostly ignored)

Application productions of converted operators get converted
into “goal applications”

Goal applications test for the existence of a goal in the “goal forest”
instead of for the existence of an operator on the state

Goal applications use :0-support to have persistent effects

.
22 June 2005 | © 2005 Soar Technology, Inc. | Slide 6 COMPANY PROPRIETARY S Soar TEEhnﬂlﬂﬂV

Thinking inside the box.

Examples

Old code
sp {top-ps*propose*init-agent
(state <s> “probl em space. nane t op-ps
-Mnitialized *yes?*)
-->
(<s> “operator <o0> + >, =)

(<o> “nane init-agent “type output) }

New code
sp "top-ps*propose*init-agent
[mat ch-root-goal <g> <s>]
(state <s> -"initialized *yes*)
-->
[creat e-persistent-subgoal <sg> init-agent <g>]

(<g> “type output)

.
22 June 2005 | © 2005 Soar Technology, Inc. | Slide 7 COMPANY PROPRIETARY S Soar Techno ogy

Thinking inside the box.

Examples

Old code
sp {init-agent*apply*intialized
(state <s> “operator.nane init-agent
Al o.out put-Ilink.command flight-command)
.
(<s> “*initialized *yes*) }

New code
sp "init-agent*apply*intialized
. 0- support

[mt ch-active-goal <g> init-agent <s>]

(state <s> “io.output-Ilink.comuand. val ue fli ght-comrand)
-->

(<s> “*initialized *yes*)

.
22 June 2005 | © 2005 Soar Technology, Inc. | Slide 8 COMPANY PROPRIETARY S Soar Techno ogy

Thinking inside the box.

Examples

Old code
sp {init-agent*term nate
(state <s> “initialized *yes*
Aoper at or <o0>)
(<o> “nane init-agent)
-->
(<s> "“operator <o0> @ }

New code
sp "init-agent*term nate
[mt ch-active-goal <g> init-agent <s>]
(state <s> “initialized *yes*)
-->
(<g> “renove- persi stent-goal <g>)

.
22 June 2005 | © 2005 Soar Technology, Inc. | Slide 9 COMPANY PROPRIETARY S Soar Techno ogy

Thinking inside the box.

Conclusion

Nuggets

Conversion of “air-route” mission in TacAir-Soar (including all
mission-planning and route-flying code)

Conversion of Tambe’s STEAM code

... on time and under budget”

Makes many rules more explicit about whether they are going to
have persistent effects

Eliminates some of the problems associated with using “persistent
goal stack” (Michigan Approach in Soar 7)

Lumps

Still not clearly cost effective to complete the conversion of TacAir-
Soar

Some parts of conversion still need to be handled by someone who
is intimate with the code

Some use of attribute preferences

Returning of results from subgoals to supergoals

Some preferences between operators

.
22 June 2005 | © 2005 Soar Technology, Inc. | Slide 10 COMPANY PROPRIETARY S Soar Techno ogy

Thinking inside the box.

