
Cost-Effective Conversion of
Large Soar 7 Systems to Soar 8

Randolph M. Jones

Soar Technology

Top-Level Problem

� Someday we would really like to convert TacAir-Soar
to use Soar 8.

� Notable issues:

• TacAir-Soar is implemented in Soar 7

• TacAir-Soar uses the “Michigan Approach” to implement

22 June 2005 | © 2005 Soar Technology, Inc. | Slide 2 COMPANY PROPRIETARY

(some of) its goals

• TacAir-Soar includes a number of programming patterns that
Soar 8 was specifically designed to prevent from working

Challenges For The Conversion

� In Soar 7, it was easy to create operators that
contained arbitrarily long sequences of application
rules

• …and so we did

• Soar 7 operators are guaranteed not to be deselected until:

• They are deliberately terminated, AND

22 June 2005 | © 2005 Soar Technology, Inc. | Slide 3 COMPANY PROPRIETARY

• They are deliberately terminated, AND

• The Soar decision cycle reaches quiescence

• Soar 8 operators are deselected as soon as their proposal
conditions are no longer matched

• For many TacAir-Soar operators, this means that the operator
would get deselected before the chain of applications gets a
chance to finish

Challenges For The Conversion

� Using the Michigan Approach in Soar 7 makes it easy
to create operators that stay selected for very long
times (hours, even)

• …and so we did

• But operators in Soar 8 are much “fussier”, in order to prevent
the knowledge in subgoals from becoming inconsistent with

22 June 2005 | © 2005 Soar Technology, Inc. | Slide 4 COMPANY PROPRIETARY

the knowledge in subgoals from becoming inconsistent with
the knowledge in supergoals

• In a Soar 8 implementation of the Michigan Approach, you
need proposal conditions to start off a long-lasting
operator/goal, but you also need proposal conditions that
will re-propose the operator/goal so it can “pick up where it
left off” if and when it is interrupted

• Re-engineering all of the TacAir-Soar operators in this way is
prohibitively expensive

An Engineering-Oriented Solution

� If it makes the conversion cheaper, we are willing to
use “non-kosher” solutions

• …and hopefully fix and refactor later

� One of the strategies for implementing the Michigan
Approach in Soar 8 is to move subgoal-related

22 June 2005 | © 2005 Soar Technology, Inc. | Slide 5 COMPANY PROPRIETARY

information to the top state (so the operators can
take up where they left off when interrupted)

• The alternative “Forest of Goals” approach also maintains all
subgoal information on the top state

� Key insight:

• We can use a couple of tricks to make goals in the “Forest of
Goals” approach behave (at least mostly) like Michigan-
Approach operators behaved in Soar 7

Basics of the Approach

� Any operator that really only does one quick task can remain an
operator

� Any operator that assumes it is going to persist for more than
one application must be converted to a “persistent goal”

• A persistent goal gets installed into the “goal forest” by an operator,
using the original operator’s proposal conditions

22 June 2005 | © 2005 Soar Technology, Inc. | Slide 6 COMPANY PROPRIETARY

• A persistent goal gets removed from the “goal forest” by an
operator, using the original operator’s termination conditions

• Operator preferences are handled on a case by case basis (but
mostly ignored)

� Application productions of converted operators get converted
into “goal applications”

• Goal applications test for the existence of a goal in the “goal forest”
instead of for the existence of an operator on the state

• Goal applications use :o-support to have persistent effects

Examples

� Old code
sp {top-ps*propose*init-agent

(state <s> ^problem-space.name top-ps

-^initialized *yes*)

-->

(<s> ^operator <o> + >, =)

(<o> ^name init-agent ^type output) }

22 June 2005 | © 2005 Soar Technology, Inc. | Slide 7 COMPANY PROPRIETARY

(<o> ^name init-agent ^type output) }

� New code
sp "top-ps*propose*init-agent

[match-root-goal <g> <s>]

(state <s> -^initialized *yes*)

-->

[create-persistent-subgoal <sg> init-agent <g>]

(<g> ^type output) "

Examples

� Old code
sp {init-agent*apply*intialized

(state <s> ^operator.name init-agent

^io.output-link.command flight-command)

-->

(<s> ^initialized *yes*) }

22 June 2005 | © 2005 Soar Technology, Inc. | Slide 8 COMPANY PROPRIETARY

� New code
sp "init-agent*apply*intialized

:o-support

[match-active-goal <g> init-agent <s>]

(state <s> ^io.output-link.command.value flight-command)

-->

(<s> ^initialized *yes*) "

Examples

� Old code
sp {init-agent*terminate

(state <s> ^initialized *yes*

^operator <o>)

(<o> ^name init-agent)

-->

(<s> ^operator <o> @) }

22 June 2005 | © 2005 Soar Technology, Inc. | Slide 9 COMPANY PROPRIETARY

� New code
sp "init-agent*terminate

[match-active-goal <g> init-agent <s>]

(state <s> ^initialized *yes*)

-->

(<g> ^remove-persistent-goal <g>) "

Conclusion

� Nuggets
• Conversion of “air-route” mission in TacAir-Soar (including all
mission-planning and route-flying code)

• Conversion of Tambe’s STEAM code

• …”on time and under budget”

• Makes many rules more explicit about whether they are going to
have persistent effects

22 June 2005 | © 2005 Soar Technology, Inc. | Slide 10 COMPANY PROPRIETARY

have persistent effects

• Eliminates some of the problems associated with using “persistent
goal stack” (Michigan Approach in Soar 7)

� Lumps
• Still not clearly cost effective to complete the conversion of TacAir-
Soar

• Some parts of conversion still need to be handled by someone who
is intimate with the code
• Some use of attribute preferences

• Returning of results from subgoals to supergoals

• Some preferences between operators

