Reasoning with Visual Depictive Representations

Soar Spatial & Visual Imagery (Soar+SVI)

28th SOAR WORKSHOP

Scott Lathrop John Laird

- MOTIVATING EXAMPLE
- DEPICTIVE MANIPULATIONS
- RESULTS
- NUGGETS / COAL

WHY RESEARCH MENTAL IMAGERY?

Cognitive Architectures

- Amodal, symbolic representations & computations
- Little *reasoning* with perceptual-based representations (Barsalou 1999, 2008)

Resulting in...

- Ad-hoc reasoning in tasks rich with spatial and visual properties
- "Bolted-on" task-dependent components

What we want

- Link perceptual-based thought and cognition
- "Best of both worlds" multi-representational, task-independent approach
 - Additional functionality
 - Computational advantage

REPRESENTATIONS

Representation	Processing	Uses	Example
<i>Symbolic</i> Amodal	Symbolic manipulation	General Reasoning Qualitative Spatial & Visual Reasoning Control imagery operations	object(can) feature (can, curve) color(can, yellow) object(box) feature(box, corner) color(box, green) on(can, box)
Quantitative spatial Amodal/Perceptual-based (Spatial Imagery)	Mathematical manipulation Laws of Dynamics (motion models)	Spatial Reasoning (Generic Shapes) Facilitate building visual depictive representation	can location <2,1,2> orientation 0 height 5 radius 2 box location <0,0,0> orientation 0 length 10 width 6 height 4
Visual depictive Modal/Perceptual-based (Visual Imagery)	Mathematical manipulation Depictive manipulation	Spatial Reasoning (Specific Shapes) Visual Feature Recognition	

Two scouts

- ≻Leader (Agent)
- Teammate (Scripted)
- > Goal: maintain visual contact with approaching enemy to "paint picture"

Task Characteristics

- > Spatial (e.g. relationships between entities, terrain, etc.)
- ≻Visual (e.g. terrain topological shape)
- > Perceive/Imagine/Re-perceive
- Planning during execution
- >Merge multiple sources of information (visual, messages, doctrine)

Actual Situation

Teammate's View

Percepts	Actions	Task Knowledge
 Agent's location and orientation Objects Egocentric direction & distance Messages 	 Look-at scene / map Send message Turn 	 Enemy doctrine No-go/go terrain (pixel values) Hypothesized key terrain
from teammate		

Agent's View

Imagined Situation 7

SCOUT DOMAIN (Example)

• Agent imagines what it and teammate can see (field of view)

9

SCOUT DOMAIN

DEPICTIVE MANIPULATIONS (1 of 2)

• Pixel-level rewrites (Furnas)

- Production-like rules (LHS/RHS)
- Shared image (i.e. working memory)
- LHS and RHS are pixel patterns
- Conflict resolution scheme (sequencing)
- Processing may match other orientations
- Active manipulation of shapes

Contrast with other image processing

- Computer vision
 - o Sentential manipulations
 - Filters (e.g. Gaussian) where each pixel is rewritten as a specific function of its neighbors' values
- Cellular Automata
 - o Finite State Machines
 - Next state of a cell based on current state
 - and state of its neighbors
 - o Rather than rewriting many local
 - configurations at once

DEPICTIVE MANIPULATIONS (2 of 2)

Distance Field Flood Mark Path Mark Path Start-Layer 2-1 Mark Path Start-Layer 2-1 Mark Path Layer 2-1 Layer 1-0 Layer 1-0

- Takes specific shape of no-go terrain and obstacles (yellow) into account
- Attention window shift controlled by Soar
- Rules sent from Soar to manipulator via operator elaborations
- Determine approximate path coverage by overlaying each scout's view frustum

• Simulate alternate view orientations to determine "best" path coverage

DEPICTIVE MANIPULATIONS (Soar only)

DEPICTIVE MANIPULATIONS (Soar+SVI)

DEPICTIVE MANIPULATIONS (Soar+SVI)

PROBLEM-SOLVING QUALITY

Enemy Scout-3 Information

PROBLEM-SOLVING QUALITY TOTAL OBSERVATIONS

NUGGETS & COAL

• NUGGETS

- Usefulness of reasoning with visual depictive representation and specialized processing
- Integration of spatial and visual imagery functional constraints

 Task-independent cognitive architecture
 Reasoning emerges from the combination of the representations

• COAL

- More research required on integration between low-level visual perception and system
- Unclear how depictive rules are learned