ROBOTICS SIMULATION ENVIRONMENTS AND SOAR

1

Jonathan Voigt

University of Michigan

Soar Workshop 28

Integrating Soar with Robotics Platforms

- Obstacles to integration:
 - Setup: How do we get Soar to communicate with the robotics control systems?
 - Input: How do we obtain appropriate sensor data and translate it for Soar?
 - Output: How do we take commands from Soar and generate appropriate actions for output?
- Strategy: Use a simulation environment to explore the technical issues

Illustration: Paintball Tanksoar

Moving "Tanksoar" to robotics domain Paintball gun, obstacles, camera, laser range finder

Illustration: Paintball Tanksoar

- Problem: Where's the other tank?
 - Difficult to identify with only range data and camera image
- Possible solution: mark the environment
 - Magenta tanks, nothing else magenta in environment
 - "Easy" for camera to detect
 - RFID tags and sensors

Another solution: get additional 3D information from environment

Additional 3D Information

- Visual and shape data for world objects
 - Loaded to long-term memory at start-up
- Class and positional information about these objects during runtime as they fall in to the domain of robot's sensors
- Hierarchical organization of the objects in sensor domain

Simulation Environments

6

The ideal simulation environment will have
Similar interface with real robotics hardware
Path for environment to communicate higher-level visual-spatial data

Simulation Environment Comparison

Environment/ Framework	Graphics Engine	&	<u></u>	Ć	Interfaces	Visual- spatial Information	Supported Robotics Platforms	Distribution and Usage	Simulation Maps/ Worlds
Player/ Stage/ Gazebo	Ogre (Gazebo)	Ν	Y	Ś	C++, Sockets	Available	Many	Young but built for widely popular Player/Stage	Ś
Microsoft Robotics Developer Studio	XNA	Y	Ν	Ν	C#, Sockets	Obscured	P2DX, Lego NXT, a few others	Young but growing	Few
USARSim	UT2004	Y	Y	Ś	Unreal Script, C++	Obscured	Many, varied	Used in yearly competitions	Many, varied including land, sea, air

Note that new robots and maps can be created for all environments.

Questions & Discussion

- 8
- Questions about these issues and environments
- Suggestions of other environments
- □ Strategies, experience, other feedback

Resources

http://usarsim.sourceforge.net/

Microsoft Robotics Developer Studio

<u>http://msdn.microsoft.com/robotics</u>

Player, Stage, Gazebo

http://playerstage.sourceforge.net/