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Semantic Memory

* Exploratory Research
 General characteristics of semantic memory

— General facts
— Abstract concepts
* Cognitive capabilities
— Remembering and retrieving general facts
— Representing and learning abstract concepts

— Representing and learning world model
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Motivation

e Previous instance based approach

— Sufficient for encoding and retrieving general facts
interfaced with working memory

— Cannot learning from sub-symbolic input
 Prototype based approach
— Generate symbols from sub-symbolic input



Learning Paradigms

Reinforcement learning
Unsupervised learning

e Supervised learning

Natural concept learning (Semi-supervised learning)

— Unsupervised learning

e Learn from input without class label
— Supervised learning

e Learn with class label

e Externally supervised
e Self supervised



Desired Algorithm Properties

Semantic memory is the long term concept
memory for a continuously learning agent

Statistical learning

— Robust against noisy environment
Incremental

— Continuously learning

Scalable

— Large amount of information

Semi-supervised learning
— Learn from both labeled and unlabeled input



Hierarchical Clustering Algorithm

e Adapted from COBWEB (D. Fisher)

* Major components
— Clustering utility function
— Local restructuring operators
— Clustering space search

 Modification
— Numeric attribute utility function

— Local restructuring operators
— Hash index based access (not evaluated)
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Algorithm Properties Revisited

Statistical learning

Incremental

Scalable

— Hierarchy (log n)

Semi-supervised learning

— Unsupervised learning: incremental clustering

— Weak supervised learning: assign class label

— Stronger supervised learning: class label can
participate in clustering utility evaluation



Preliminary Evaluations

reee Lcousion e

Unsupervised Clustering Qualitative
Compare clustering with instance based learning  Prediction ?
Accuracy
Compare different degrees of prior unsupervised Prediction ?
learning Accuracy

e Instance (exemplar) based learning

— Naive implementation

— Linear complexity to find nearest neighbor (best partial match)
e Types of data

— Symbolic to numeric features

— Low dimension to high dimension vector input
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Evaluation on Artificial data set

Symbolic
values
Componentl Component2 20 Random features with values (1~3)
class a 0|0|10f0]0]0
class b O({0|0|1(1]1
class c 11111111111
class d 11111121212
class e 21212121212
class f 212121o0lolo0
Signal Noise




Training and Testing

Unsupervised O[0|0f1]|1(1

Learning structure of input without label

Supervised O(0j0|1]|1]|1 + class b

Learn the ‘meaning’ of the concepts

Prediction o(ofof1f1]1 -> class ?




Supervised learning after 20 instances
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Unsupervised learning of 30 and then
supervised learning of 20
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Accuracy
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Artificial Data Evaluations

I S ) T

Unsupervised Clustering Qualitative
Compare clustering with instance based learning  Prediction +
Accuracy
Compare different degrees of prior unsupervised Prediction +
learning Accuracy

* High dimension symbolic vector
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Iris Data Set

Fisher, R.A. (1936)

Iris Data (red=setosa,green=versicolor.blue=virginica)
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Supervised learning after 20 instances
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Unsupervised learning of 50 and then
supervised learning of 20
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Accuracy
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Iris Data Evaluations
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Unsupervised Clustering Qualitative

Compare clustering with instance based learning  Prediction -

Accuracy
Compare different degrees of prior unsupervised Prediction +
learning Accuracy

* Low dimension numeric vector
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Letter Recognition Data
A AU 40 44 AA
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Letter Recognition Data

David J. Slate (1991)

Nurkher of Instances: 20000
Mumber of Attributes: 17 [(Letter category and 16 numeric features)

Attrikbute Information:

1. lettr capital letter (26 wvaluezs from L ta Z)

2. ¥»-hox horizontal position of hox [intedger)
3. v-hox vertical position of box [intedger)
4, width width of box [integer)
o, high height of box [intedger)
6. onpix total # on pixels [integer)
7. x-har mean ¥ of on pixels in bhox [intedger)
8. v-har wmean v of on pixels in hox [intedger)
=] xZbhar mean ¥ wvariance [integer)
10. vebhar mean ¥ wvariance [integer)
11. xvhar mean ¥ ¥ correlation [integer)
1z. xZvhr mean of x ¥ x ¥ oy [integer)
13. xvehr mean of x ¥ y ¥ oy [intedger)
14, Xx-ege mean edge count left to right [integer)
15. MEVY correlation of x-ege with v [integer)
16, v—ege mean edge count hottom to top [integer)
17. VEOvH correlation of yv—-ege with = [integer)



Easy Set and Difficult Set

e Difficult to test on entire data set
— 26 classes
— Diverse situations
— Current implementation is not fast enough

e Tested on subpart of the data
— Easy Set
« AKO

— Difficult Set
e KRX



Supervised learning after 20 instances
Easy Set—AKO
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Unsupervised learning of 50 and then
supervised learning of 20
Easy Set—AKO
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Result for easy set—A KO

Prediction Accuracy for AK O
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Supervised learning after 20 instances
Difficult Set — K R X
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Unsupervised learning of 50 and then
supervised learning of 20
Difficult Set — K R X
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Result for difficult set — K R X

Prediction Accuracyfor KR X

0.60
|
|

0.55
|
I
I

0.50
|

----- nearest neighbor
—— unsupervised 0

Accuracy
045
|

— unsupervised 200

0.35 040
| |

0.30
|

| | | |
5 10 1% 20

Supervised Training



Letter Recognition Data Evaluations

I S ) T

Unsupervised Clustering Qualitative
Compare clustering with instance based learning  Prediction ?
Accuracy
Compare different degrees of prior unsupervised Prediction ?
learning Accuracy

* High dimension numeric vector
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Conclusions

e Clustering is useful for filtering out ‘noisy’
features

— Positive: Artificial data set
— Negative: Iris data set.
e Quality of passive clustering directly depends
on input features (slave of features)
— Positive: All except KR X
— Negative: KR X



Future Directions

e Adaptive feature selection
— Generate and selection features
— Clustering as guidance of feature selection

* Richer representation
— Vector
— Relational graph
— Image
* |Integration with Soar-RL

— Provide abstract representation for symbolic TD
learning



Nuggets and Coal

* Nuggets

— Concept learning from subsymbolic input

— Combine unsupervised and supervised learning
e Coal

— Need feature selection
— Need more realistic evaluation domain



