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New Knowledge Types

« New modules in Soar introduce new types of knowledge
— Q-values in RL
— Episodic memories

— Semantic memories/Clusters

« Used to make decisions even when
suboptimal/incorrect/changing

— RL makes decisions with randomly initialized Q-values

— Episodic memories retrieved with the same cue change with
experience



Chunking

Summarizes problem solving in subgoals

Assumes decisions are correct instead of “best
we can do for now”

Chunking over new types of knowledge will
result in permanent suboptimal rules

Solution:

— Hold off chunking decision processes until we're
confident that they are correct or nearly optimal



Determining When to Chunk

« Need general mechanism to inform chunking
algorithm about confidence in decisions
 Associate probabilities with operator selection

— P(operator O should be selected in state S | Knowledge)

— Design separate mechanisms to calculate probabilities
for decisions conditioned on each type of new
knowledge

— Decisions made with only symbolic preferences have
probability 1



Chunking over Probabilities

P(O1 should be selected in S2 | K) = 0.95
P(O2 should be selected in S2’ | K) = 0.95
P(O3 should be selected in S2” | K) = 0.9

P(S1 should follow S1 | K) = Probability that we should chunk
=0.95*0.95* 0.9 =0.81225 218



Outline

e Chunking with uncertain knowledge

e Calculating uncertainty in Reinforcement
Learning

o Evaluation

» Discussion / Nuggets & Coals



Probabilities in RL

« Operator with highest true Q-value is the
correct operator to select

-
0

Shouldselecta iff Q(s,a) > Q(s,b) L Q(s,a) > Q(s,c)
P(shouldselecta) = P(é(s, a) > Q(s, b))x P(é(s, a) > Q(s, c))




Finding P(Q(s,a) > Q(s,b))

o Establish confidence bounds
—“97% confident that true Q is in [Qmr Qmax]”

P(Q >Qy) = {P(QL Bl ’thaXDEP(Qz ] [QS“” Q' aXD= 972 if QN> QY

0 otherwise



Interval Estimation

« Kaebling 1993

« Estimate true Q with median of last N
sampled Q values

» For each (s,a), maintain sliding window of
N most recent Q values
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Interval Estimation

« Estimate true Q with median of last N
sampled Q values (Kaebling 1993)

S » S >
+2
Q(S,a)\_\\//\SK

Window =[ 6.5 ]
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Interval Estimation

« Estimate true Q with median of last N
sampled Q values (Kaebling 1993)

S » S >
+2
Q(s,a) %

Window =[6.5 7.58 8.1 5.2 ... 10.1 9.3 |

— _
—

N
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Interval Estimation

Window =[ 5.2 6.5 7.58 8.1 ... 9.3 10.1 ]

1 2 3 4 n-1 n
| T | | T |
I S
Q, Qs

P(exactly K sampleS< Qmed) = P(Qk < Qmed < Qk+1) = 05" [Elr(]]

s—1 N
P(Qr <Qmed <Qs) = 2, 05" [Ekj > 097
K=r

Choose r and s that are as close as possible but still meet constraints
13



Interval Estimation in Soar

« Keep track of confidence bounds for all state-
operator pairs

— If the sample window hasn’t filled up, assume that
Q(s,a)l[-00,+c0]

— Otherwise calculate as described

 If confidence bounds are separated, chunk over
decision

« Can only chunk when all windows are filled
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Evaluation Criteria

« Do intervals overlap to prevent chunking
when RL policy still nonstationary?

e Can interval estimation be tricked into
separating intervals by complex
environments?
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Evaluation Environment

Adapted from Kaebling 1993
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Easy Environment
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N=20, r=5, s=16 (P=0.97)
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Harder Environment
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N=20, r=
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Window Size vs. Exploration
Q0
00-0Q

Epsilon
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Hardest Environment
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Window Size vs. Exploration

T T T

Epsilon
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Conclusion

 Interval estimation doesn’t provide
theoretical guarantees of boundedness

« Empirically, it can overcome some
trickiness in the environment

« Window size and exploration factor have
to be tweaked on a per-environment basis
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Conclusion

 Nuggets
— Interval estimation works empirically
— Provides some protection against chunking bad decisions

— Computationally very cheap

e Coals
— No theoretical guarantees on bounds

— More parameters to adjust
« Two other methods being investigated:
— Hoeffding inequality

— Bayesian estimation
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