
Transfer Learning Revisited

Joseph Xu

Work also by Yongjia Wang, Sam Wintermute

University of Michigan

Soar Workshop 28

Outline

• Review work from previous year’s transfer
learning talk

– Transfer learning

– Evaluation environments

2

– Indicator heuristic

• Work done after last talk

– Source-target mapping

– Results

• Discussion

Transfer Learning

• Working on a source problem improves learning
or performance on target problem

– Transfer case: work on source problem before
working on target

3

– No Transfer case: work on target without seeing
source

),max(tpntp

tpntp
regret

−=

ntp = No Transfer Case Performance
tp = Transfer Case Performance

Environment

• All problems are deterministic, discrete,
finite games in General Game Player

4

Source: Explorer must kill
mummy with gun

Target: Explorer must kill
mummies with grenade

Environment

• 4 game domains:

– Escape

– Wargame

– Rogue

5

– Rogue

– Build

• Sequence of levels categorizing types of transfer

– Levels 6-9 within-domain transfer

– Level 9 is automatic obfuscation of symbol names

– Levels 10, 11 cross-domain transfer

Transferring Heuristics

• Automatically translate game rules into Soar
productions

• Use selection space operators to do look-ahead
iterative deepening

6

• Learn heuristics in source game, transfer to
target game

Source/No Transfer Agent
Knowledge

Game rules

Selection space operators

Transfer Agent Knowledge

Game rules

Selection space operators

Transferred heuristics

X
• Assume that state
changes in solution path
are conducive to winning
game

• Transfer involves finding

Indicators

-(alive mummy)

7

• Transfer involves finding
analogous state changes
in the target

• Increase search depth on
paths where indicators
occur in target problem
solving

+(holding (explorer gun))

Outline

• Review work from previous year’s transfer
learning talk

– Transfer learning

– Evaluation environments

8

– Indicator heuristic

• Work done after last talk

– Source-target mapping

– Results

• Discussion

Mapping Indicators

• Hard to determine semantic analogies
between source and target symbols

• Simple syntactic “diff”-like alignment

9

• Break into 2 stages

–Mapping predicates

–Mapping constants

(holding explorer gun)

Mapping Predicates

• Greedy algorithm to maximize structural
overlap of rules

1.0

10

2

2.3

3.1

1.0

Source rule Target rule

(<= (next (location ?monster ?x ?y))(<= (next (location ?monster ?x ?y))(<= (next (location ?monster ?x ?y))(<= (next (location ?monster ?x ?y))

(monster ?monster ?monster(monster ?monster ?monster(monster ?monster ?monster(monster ?monster ?monster----type)type)type)type)

(true (health ?monster ?health))(true (health ?monster ?health))(true (health ?monster ?health))(true (health ?monster ?health))

(> ?health 0)(> ?health 0)(> ?health 0)(> ?health 0)

(nextMonsterLocation ?monster ?x ?y))(nextMonsterLocation ?monster ?x ?y))(nextMonsterLocation ?monster ?x ?y))(nextMonsterLocation ?monster ?x ?y))

(<= (wouldStepVertical ?t ?dir ?x1 ?y1 ...)(<= (wouldStepVertical ?t ?dir ?x1 ?y1 ...)(<= (wouldStepVertical ?t ?dir ?x1 ?y1 ...)(<= (wouldStepVertical ?t ?dir ?x1 ?y1 ...)

(cellNearTerrorist ?t ?x1 ?y1)(cellNearTerrorist ?t ?x1 ?y1)(cellNearTerrorist ?t ?x1 ?y1)(cellNearTerrorist ?t ?x1 ?y1)

(intendedSoldierLocation ?x2 ?y2)(intendedSoldierLocation ?x2 ?y2)(intendedSoldierLocation ?x2 ?y2)(intendedSoldierLocation ?x2 ?y2)

(verticalRelation ?t ?dir ?x2 ?y2 ?x1 ?y1)(verticalRelation ?t ?dir ?x2 ?y2 ?x1 ?y1)(verticalRelation ?t ?dir ?x2 ?y2 ?x1 ?y1)(verticalRelation ?t ?dir ?x2 ?y2 ?x1 ?y1)

(not (stepBlocked ?dir ?x1 ?y1)))(not (stepBlocked ?dir ?x1 ?y1)))(not (stepBlocked ?dir ?x1 ?y1)))(not (stepBlocked ?dir ?x1 ?y1)))

(nextMonsterLocation ?monster ?x ?y) (nextMonsterLocation ?monster ?x ?y) (nextMonsterLocation ?monster ?x ?y) (nextMonsterLocation ?monster ?x ?y) ���� (verticalRelation ?t ?dir ?x2 ?y2 ?x1 ?y1)(verticalRelation ?t ?dir ?x2 ?y2 ?x1 ?y1)(verticalRelation ?t ?dir ?x2 ?y2 ?x1 ?y1)(verticalRelation ?t ?dir ?x2 ?y2 ?x1 ?y1)

1.0

8.4

Mapping Predicates

• Greedy algorithm to maximize structural
overlap of rules

Source rules Target rules

11

Mapping Constants

4 common predicates for staples1

Source
constants

Target
constants

combine

Source
predicates

cmbn

Target
predicates

12

nails

staples

rock

3 common predicates for staples1

doCompromise

doDestroy

combine

location

G
en

er
at

e
bi

nd
in

gs

dCmprms

dDstry

cmbn

location

G
en

er
at

e
bi

nd
in

gs

Summary of Approach

• Transfer case

1. Source game rules presented

2. Agent solves source problem with uninformed
search

3. Predicates and constants that experience transitions

13

3. Predicates and constants that experience transitions
on solution path saved as indicators

4. Target game rules presented

5. Source and target symbols are matched by mapping
source rules onto target rules

6. Agent timed as it solves target problem using
transferred indicators as heuristics

Summary of Approach

• No-Transfer case

1. Target game rules presented

2. Agent timed as it solves target problem with
uninformed search

14

uninformed search

Results

• 40 games spread
over levels and
domains

• Measured in Soar
decisions

0

0.2

0.4

0.6

0.8

6 7 8 9 10 11

Level

R
eg

re
t

T
ra

n
sf

er

15

decisions Level

0

0.2

0.4

0.6

0.8

1

Build Escape Wargame Rogue

Domain

R
eg

re
t

T
ra

n
sf

er

Credit Assignment

• Mapping

– Many source-target pairs were similar enough such that
mapping did not have to be accurate

– Mostly perfect mapping of level 9

– Hard to gauge success on other levels

16

– Hard to gauge success on other levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6 7 8 9 10 11

Level

Tr
an

sf
er

With Mapping No Mapping

Credit Assignment

• Heuristic

– Level 9 source-target pairs with perfect mapping

– No-transfer-case agent had bare minimum knowledge

– Game rules + selection space search + very basic heuristics

– Any transferred knowledge gets big improvements

17

– Any transferred knowledge gets big improvements

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

rogue wargame escape build

Domain

T
ra

n
sf

er

Generalizability

• Source knowledge that requires search is useful
to transfer

• Cannot determine correctness of transferred
knowledge without first solving target game

18

• No formal guarantee of correctness/desirability
that can be generalized over a class of games

X X

Conclusion

• Nuggets

–Developed agent that performed well on
evaluations

–Soar can solve any GGP game

19

–Soar can solve any GGP game

• Coals

–Can’t make any strong claims about
generalizability of results

Hindsight

• GGP is too general

– No formal relationships between sources and targets

– Implicit constraints set on evaluation domains were
ad hoc and hazy

– No guarantees about generalizability of results

20

– No guarantees about generalizability of results
beyond game domains tested

• To make meaningful progress

– Change the source-target paired evaluation paradigm

– Focus on formally constrained problems

– Test over problem distributions instead of single
instances

Engineering Challenges

• Up to …

–60000 WMEs – many multi-value attributes

–600 Rules

21

–2 million decisions

• Over 100 automatically generated agents

