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o Taxicab Problem Domain

« RL and HRL

« Dietterich's MaxQ Hierarchy
« Goals

. Agents
 Performance
o Observations
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SML Taxicab Domain

Destination = red

"he agent's goal Is to get RSl
the passenger and RPS =0
deliver it to the
destination, without
running out of fuel (in the

Finite-Fuel Task)

Given the fuel constraint,
one false step can result
IN massive negative

reward and incorrect Y
learning
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SML Taxicab Domain

Destination = red
Fuel=9

. Taxi Starts Anywhere — A=Sa

« Passenger Starts at Red, R
Green, Blue, or Yellow

o Destination is Red, Green,
Blue, or Yellow

» Fuel Initially Between 5
and 12 (inclusive)

o« Maximum Fuel is 14 Y
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SML Taxicab Domain

Destination = red

 Actions are Discrete and E%Eario

Deterministic

« Move North, South, East,
or West

« Pickup
« Putdown
« Refill

« In the Finite-Fuel Task,
moving when out of fuel Y
results in failure
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Reinforcement Learning

« RL agent must have a reward signal

« One common evaluation metric Is reward per step
« Agents typically learn a value function

« Numeric indifferent preferences in Soar-RL
« Exploration policies vary significantly

« Boltzmann indifferent selection biases exploration
toward relatively promising actions

- Important given the low probability of success when the
fuel constraint is enforced
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Hierarchical
Reinforcement Learning

 Dietterich proposed MaxQ

« Decompose task

- Reduce the dimensionality of the problem
- Enable transfer learning within the problem

« Decompose reward signal

- Subtasks receive reward for their decisions only

« Dietterich applied MaxQ to the
Taxicab Problem Domain
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Dietterich's Hierarchy

MaxGet

MaxRefuel
[ QNavigateForGet(t) ] QNavigateForRefueI(t)] [ QNavigateForPut(t) ]

MaxPut

QFillup
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Goals

« Approximately reproduce Dietterich's work by
applying MaxQ to the Taxicab Problem Domain
In Soar-RL

« Explore the capabilities of Soar-RL
» Attempt to verify the original results
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Soar-RL Parameters

« All my agents use

« Learning Rate 0.3 (Dietterich used 1.0)
« SARSA

o Boltzmann Indifferent Selection

- Initial Temperature 1.0 (Dietterich used 50.0)

- Exponential Reduction Rate of 0.9999 (Dietterich varied
this parameter at each MaxQ node)

- Minimum Temperature of 0.05
« No discounting

« No eligibility traces
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Four Task Variations

 Informed (Given The Passenger Source Color
& The Passenger Destination Color)

« Infinite Fuel
o Finite Fuel <« Dietterich's Task

« Uninformed (Given Only Sensory Input)

o Infinite Fuel
o Finite Fuel
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Four Agents

« Omniscient (Takes Advantage Of Given Source

& Destination Color Information)

. Flat
. Hierarchical

« Uninformed (Must Search For The Passenger

& Learn The Destination Upon Pickup)

. Flat
« Hierarchical
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Informed-Infinite

Agent Performance in the Taxicab Problem Domain

- - Optimal (30 Averaged)
—— Flat Omniscient (30 Averaged)

Reward Per Step (Moving Average * 40)

—— Hierarchical Omniscient (30 Averaged)
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Informed-Finite

Agent Performance in the Taxicab Problem Domain

- Optimal (30 Averaged)
A P Flat Omniscient (30 Averaged)
Hierarchical Omniscient (30 Averaged)
Flat Omniscient (Dietterich's Run)
i Hierarchical Omniscient (Dietterich's Run)
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Uninformed Hierarchy
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Uninformed-Infinite

Agent Performance in the Taxicab Problem Domain
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Uninformed-Finite

Agent Performance in the Taxicab Problem Domain

- - Optimal (30 Averaged) Reward Per Step
—— Flat Uninformed (30 Averaged)
1fp-ees —— Hierarchical Uninformed (30 Averaged) i
—— HU with Fuel Abstraction (30 Averaged) (500 EXtra RunS)
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Flat = -0.29

HRL = -0.27

HRL w/ FA=-0.16

Reward Per Step (Moving Average * 200)
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Observations

« MaxQ decomposition of the reward function is
problematic when reward Is undiscounted

« Certain costs must affect multiple nodes
- Additive property of the decomposition is violated

o Difficult to evaluate learning by direct analysis
of reward rules in Soar

» Certain types of decisions can visualized In
an N-dimensional space (primitive motion
decisions)

« Others are more difficult to map to a visual (choice
of next subtask)
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Current / Future Work

« Automatic hierarchy generation

« Factored State Representation

« Given the result of each action from any given
state, extrapolate hierarchical structure from trends

In the changes In state variables

. Related work
. Predictive State Representation
« DOOR,,,«
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Hierarchy Generation
(In Progress)
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Nuggets and Coal

. Nuggets

. Soar-RL implementation of HRL Is effective

. SML allowed easy implementation of Dietterich's
“one temperature per node” technigue for HRL

. Coal
« Verification of policy optimality is non-trivial

« Uninformed-Hierarchical Agent unlearns the
Finite-Fuel Task after 20,000 episodes
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