Hierarchical Reinforcement Learning in the Taxicab Domain

Mitchell Keith Bloch bazald@umich.edu

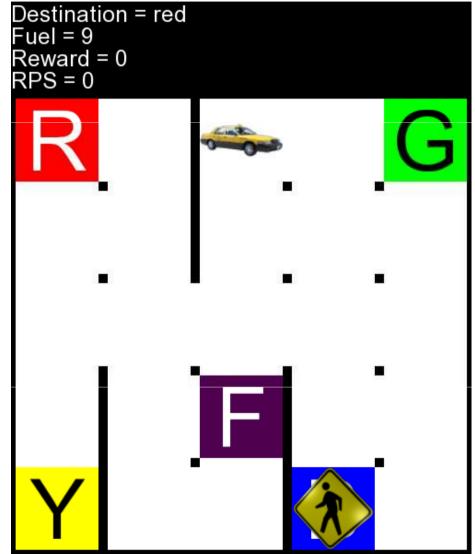
Soar Group University of Michigan

Preview

- Taxicab Problem Domain
- RL and HRL
 - Dietterich's MaxQ Hierarchy
- Goals
- Agents
 - Performance
- Observations

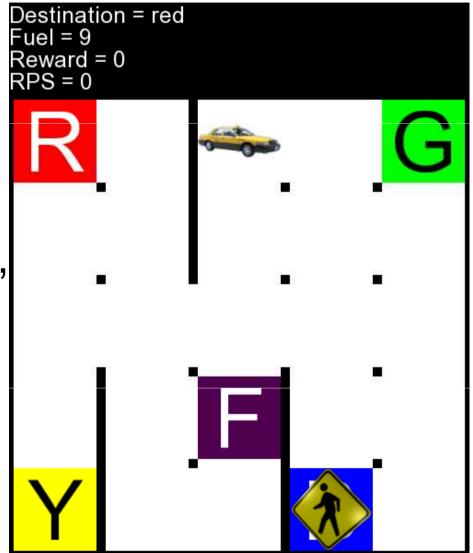
SML Taxicab Domain

- The agent's goal is to get the passenger and deliver it to the destination, without running out of fuel (in the Finite-Fuel Task)
- Given the fuel constraint, one false step can result in massive negative reward and incorrect learning
 7/14/2009 HRL Taxicab - M



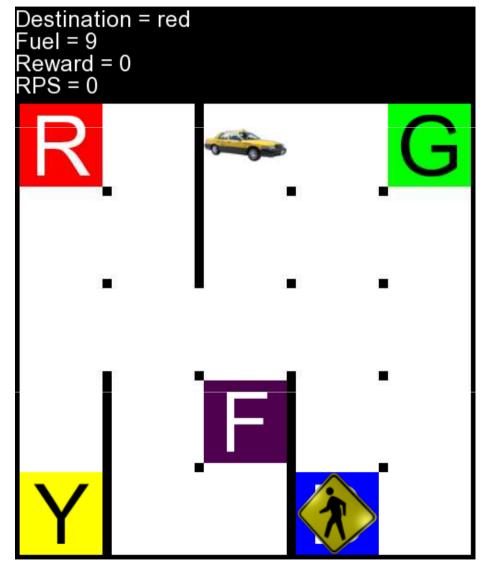
SML Taxicab Domain

- Taxi Starts Anywhere
- Passenger Starts at Red, Green, Blue, or Yellow
- Destination is Red, Green, Blue, or Yellow
- Fuel Initially Between 5 and 12 (inclusive)
- Maximum Fuel is 14



SML Taxicab Domain

- Actions are Discrete and Deterministic
 - Move North, South, East, or West
 - Pickup
 - Putdown
 - Refill
- In the Finite-Fuel Task, moving when out of fuel results in failure



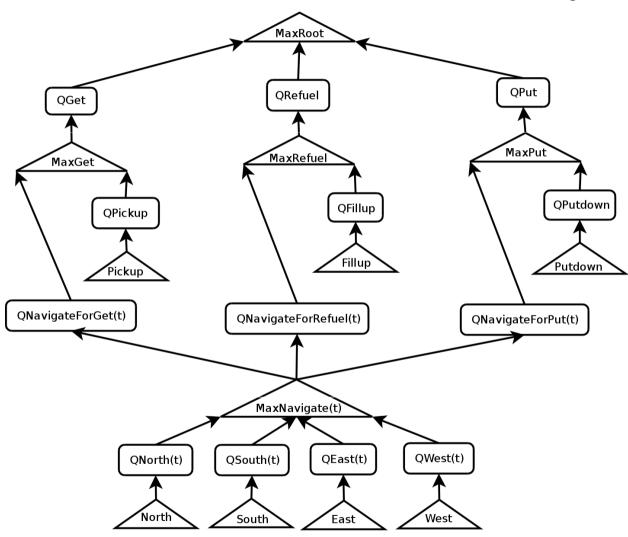
Reinforcement Learning

- RL agent must have a reward signal
 - One common evaluation metric is reward per step
- Agents typically learn a value function
 - Numeric indifferent preferences in Soar-RL
- Exploration policies vary significantly
 - Boltzmann indifferent selection biases exploration toward relatively promising actions
 - Important given the low probability of success when the fuel constraint is enforced

Hierarchical Reinforcement Learning

- Dietterich proposed MaxQ
 - Decompose task
 - Reduce the dimensionality of the problem
 - Enable transfer learning within the problem
 - Decompose reward signal
 - Subtasks receive reward for their decisions only
- Dietterich applied MaxQ to the Taxicab Problem Domain

Dietterich's Hierarchy



Goals

- Approximately reproduce Dietterich's work by applying MaxQ to the Taxicab Problem Domain in Soar-RL
 - Explore the capabilities of Soar-RL
 - Attempt to verify the original results

Soar-RL Parameters

- All my agents use
 - Learning Rate 0.3 (Dietterich used 1.0)
 - SARSA
 - Boltzmann Indifferent Selection
 - Initial Temperature 1.0 (Dietterich used 50.0)
 - Exponential Reduction Rate of 0.9999 (Dietterich varied this parameter at each MaxQ node)
 - Minimum Temperature of 0.05
 - No discounting
 - No eligibility traces

Four Task Variations

Informed (Given The Passenger Source Color

& The Passenger Destination Color)

- Infinite Fuel
- Finite Fuel ← Dietterich's Task
- Uninformed (Given Only Sensory Input)
 - Infinite Fuel
 - Finite Fuel

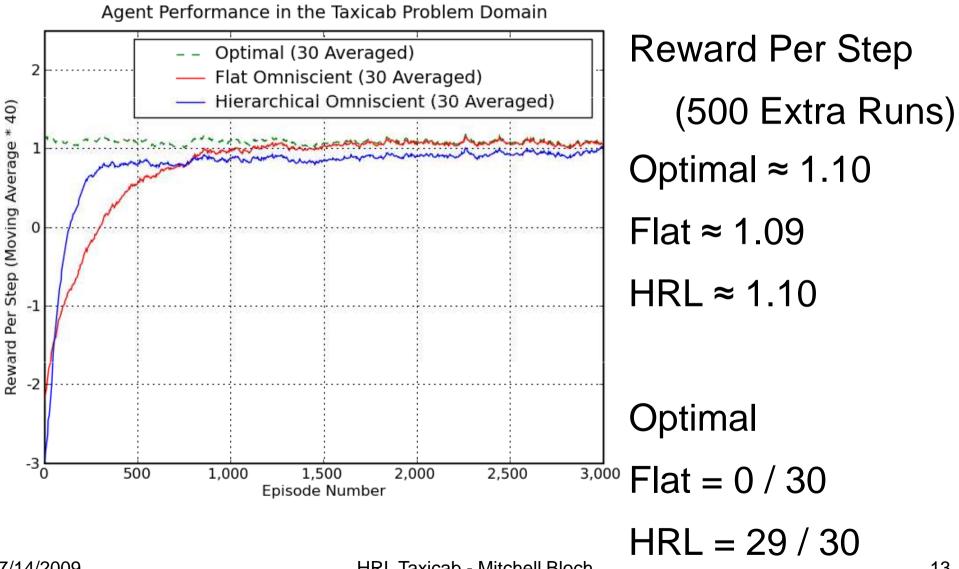
Four Agents

Omniscient (Takes Advantage Of Given Source

& Destination Color Information)

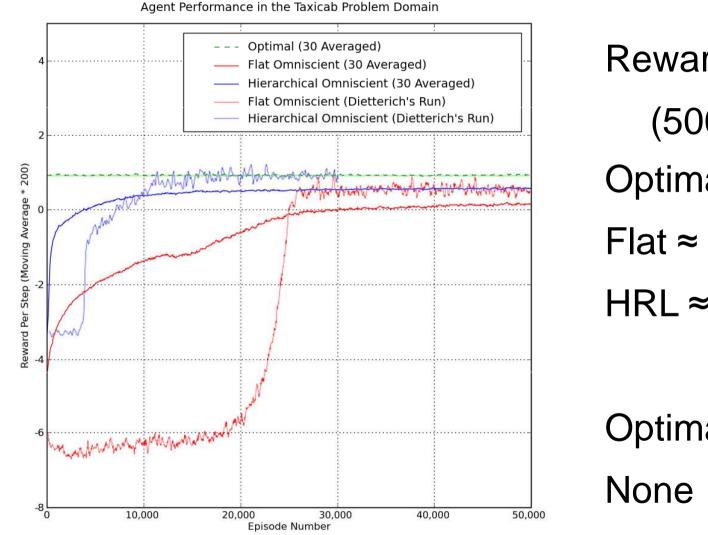
- Flat
- Hierarchical
- Uninformed (Must Search For The Passenger & Learn The Destination Upon Pickup)
 - Flat
 - Hierarchical

Informed-Infinite



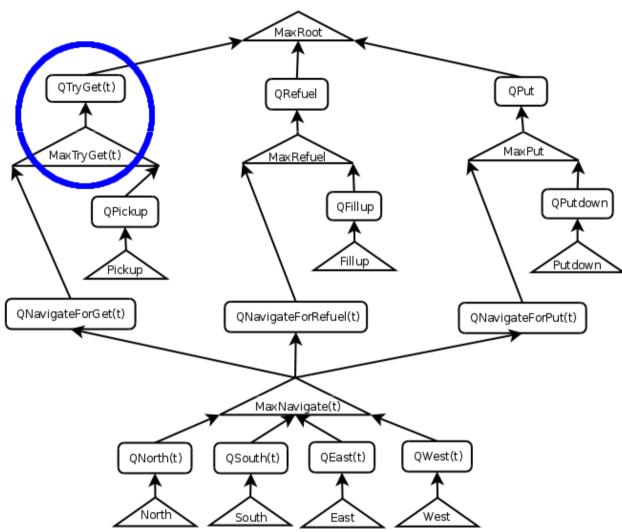
HRL Taxicab - Mitchell Bloch

Informed-Finite

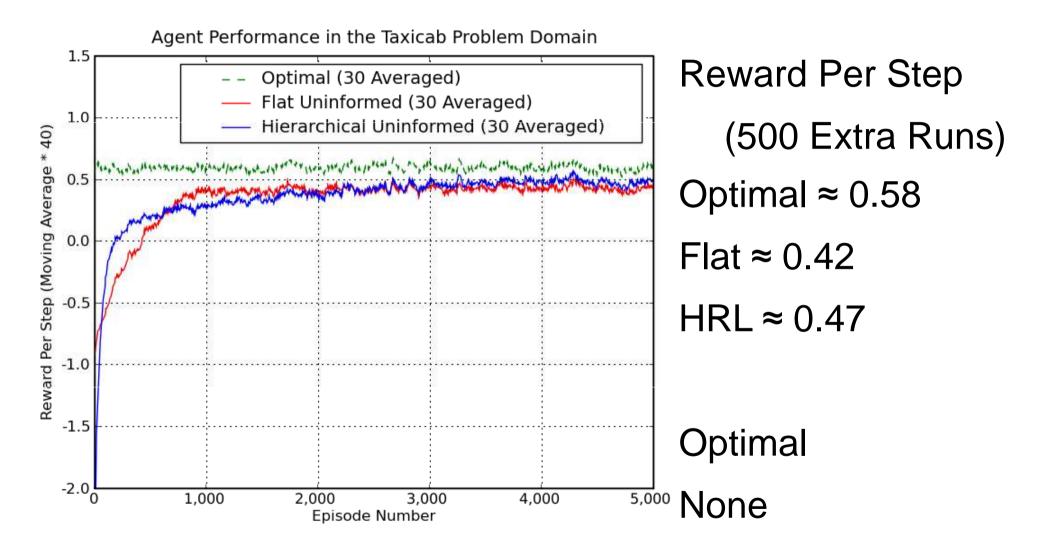


Reward Per Step (500 Extra Runs) Optimal ≈ 0.93 Flat ≈ 0.16 HRL ≈ 0.58 Optimal

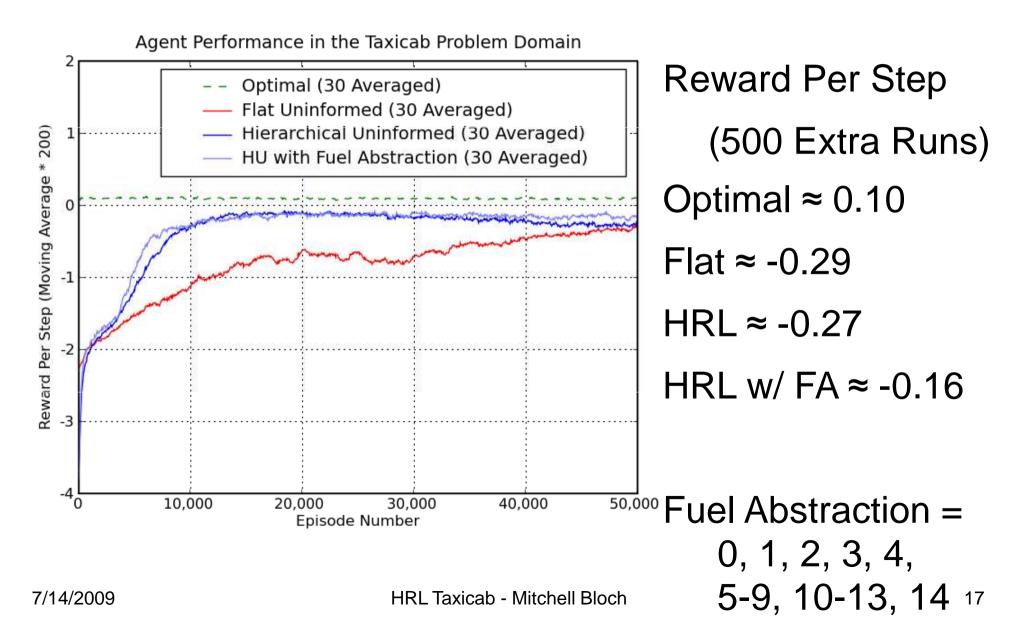
Uninformed Hierarchy



Uninformed-Infinite



Uninformed-Finite

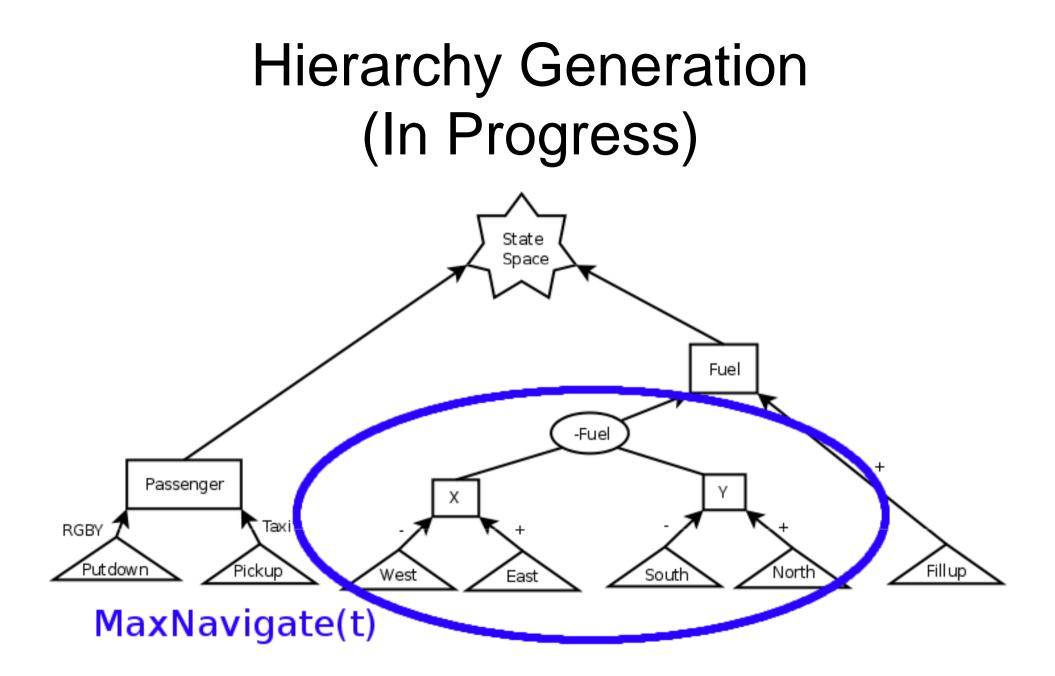


Observations

- MaxQ decomposition of the reward function is problematic when reward is undiscounted
 - Certain costs must affect multiple nodes
 - Additive property of the decomposition is violated
- Difficult to evaluate learning by direct analysis of reward rules in Soar
 - Certain types of decisions can visualized in an N-dimensional space (primitive motion decisions)
 - Others are more difficult to map to a visual (choice of next subtask)

Current / Future Work

- Automatic hierarchy generation
 - Factored State Representation
 - Given the result of each action from any given state, extrapolate hierarchical structure from trends in the changes in state variables
- Related work
 - Predictive State Representation
 - DOOR_{MAX}



Nuggets and Coal

- Nuggets
 - Soar-RL implementation of HRL is effective
 - SML allowed easy implementation of Dietterich's "one temperature per node" technique for HRL
- Coal
 - Verification of policy optimality is non-trivial
 - Uninformed-Hierarchical Agent unlearns the Finite-Fuel Task after 20,000 episodes