
Introducing
Constrained Heuristic Search

to the
Soar Cognitive Architecture

(29th Soar Workshop, University of Michigan)

Sean A. Bittle
Mark S. Fox

June 25th, 2009

� Introduction: The problem, objectives of research

� Review:

� Soar Cognitive Architecture

� Constraint Satisfaction Problems (CSP)

� Hyper-Heuristics

� Constrained Heuristic Search (CHS)

Agenda

� Design of CHS-Soar

� Learning via subgoaling and chunks (Soar 8.6.3)

� Experiments and Results

� Reinforcement learning (Soar 9.0)

� Future Work and Issues

2/29

General problem solving and domain independent learning are
central goals of AI research on cognitive architectures.

Problem:

� However, there are few examples of domain independent learning in
cognitive architectures

Introduction

Objective:

� Demonstrate Soar can learn and apply domain independent
knowledge

3/29

� Current work based on Soar version 8.6.3, and Soar 9.0

Soar Cognitive Architecture

4/29

� Constraint satisfaction is a sub-domain of constraint programming dealing with
problems defined over a finite domain

� More formally, CSP consists of a finite set of:

� Variables (X1, X2,…Xn)

� Constraints (C1, C2,…Cn)

� Each variable has a finite domain Di of possible values

Constraint Satisfaction Problems (CSP)

� Useful to represent CSP as a binary constraint graph

5/29

Constraint Satisfaction Problems (CSP)

� Backtrack search is the general approach used to solve a CSP

� General-purpose methods can provide ways to improve backtrack search
efficiency:

� Can we detect inevitable failure early? → Propagation

� Which variable should be assigned next? → Variable Ordering

� In what order should its values be tried? → Value Ordering

Use heuristics to

guide variable and

value ordering

6/29

� In what order should its values be tried? → Value Ordering

Hyper-Heuristics

Problem with variable and value ordering heuristics is “effective generality”

� Hyper-Heuristics are “Heuristics to Choose Heuristics”

� A hyper-heuristic is a high-level heuristic which uses some type of learning
mechanism in order to choose (switch) between various low-level heuristics

� Most popular learning approach based on using a Genetic Algorithm (GA)

7/29

� Most popular learning approach based on using a Genetic Algorithm (GA)

� Developed by Fox, Sadeh, Bayken, 1989

� CHS is a problem solving approach that combination of constraint
satisfaction and heuristic search where the definition of the problem space is
refined to include:

� Problem Topology

� Problem Textures
Constraint Graph

Constrained Heuristic Search (CHS)

� Problem Textures

� Problem Objective

8/29

What are Texture Measures?

� A texture measurement is a technique for distilling information embedded in the
constraint graph into a form that heuristics can use

� A texture measurement is not a heuristic itself, but can be considered the
constituent parts of a heuristic

Constrained Heuristic Search (CHS)

Ordering Name Texture Heuristic

9/29

Ordering Name Texture Heuristic

Variable Minimum

Remaining Values

(MRV)

Di, number of remaining values

in domain of variable.

Select the variable with the smallest Di, value

e.g. pick the variable with the fewest legal

values.

Design of CHS-Soar
“How Does CHS-Soar Solve Problems?”

CHS-Soar problem solving is formulated by applying operators to states within a

problem space in order to achieve a goal

10/29

Design of CHS-Soar
“What are we trying to Learn?”

11/29

Design of CHS-Soar
“How does CHS-Soar Solve Problems (and Learn)?”

12/29

Design of CHS-Soar
“How does CHS-Soar Solve Problems (and Learn)?”

13/29

MRV 0.50

DEG 0.00

DEG 0.40

DEG 0.60

DEG 1.00

Type Value

“pruned” and normalized

Design of CHS-Soar
“How does CHS-Soar Solve Problems (and Learn)?”

14/29

Variable Texture Propose Rule

sp {propose*SelectVariableTexture

(state <s> ^name CHS-Soar

^problem-space <p>

^phase SelectVariableTexture

^top-state.vartextype <type>

^<type> <value> { <value> <= 1.0 })

-->

(<s> ^operator <op> +)

(<op> ^name SelectVariableTexture

^type <type>

^value <value>) }

MRV 0.50

DEG 0.00

DEG 0.40

DEG 0.60

DEG 1.00

Type Value

sp {apply*initialize

:

-->

:

^vartextype DEG MRV

^valtextype LCV

:

}

Subgoaling:

Design of CHS-Soar

MRV 0.50

DEG 0.00
DEG 0.40
DEG 0.60
DEG 1.00

15/29

Subgoaling:

Design of CHS-Soar

MRV 0.50
DEG 0.00
DEG 0.40

16/29

DEG 0.40
DEG 0.60
DEG 1.00

LCV ?
LCV ?
LCV ?

LCV ?
LCV ?
LCV ?

Subgoaling-Chunking:

Design of CHS-Soar

Working Memory

DEG

MRV
= 0.5

?

?

MRV = 0.5

DEG = 0.0

DEG = 0.4

DEG = 0.6

?

Impasse Working Memory

MRV = 0.5

DEG = ?

DEG = ?

DEG = ?

DEG = 1.0 DEG = 1.0
Resulting Chunk is :
DEG = 1.0 AND
MRV = 0.5 ����
Preference

DEG = 1.0

No Impasse

Forms

Standard Soar Chunk (Water Jugs)

sp {chunk-54*d150*tie*2

:chunk

(state <s1> ^name water-jug ^operator <o1> +

^problem-space <p1>

^desired <d1> ^jug <j1> ^jug <j2>)

(<o1> ^name fill ^jug <j1>)

(<p1> ^name water-jug)

(<j1> ^contents 0 ^volume 3)

(<j2> ^contents 0 ^volume 5)

(<d1> ^jug <j3>)

(<j3> ^contents 1 ^volume 3)

-->

(<s1> ^operator <o1> >) }

CHS-Soar Binary Chunk (decoupled from problem type)

sp {chunk-514*d513*tie*4

:chunk

(state <s1> ^phase |SelectVariableTexture|

^top-state <s1> ^name |CHS-Soar| ^desired <d1>

^operator <o1> + ^operator <o2> + ^problem-space <p1>)

(<d1> ^better higher)

(<o1> ^value 1. ^name |SelectVariableTexture| ^type |DEG|)

(<o2> ^value 0.14 ^name |SelectVariableTexture| ^type |MRV|)

(<p1> ^name |CHS-Soar|)

-->

(<s1> ^operator <o2> < <o1>) }

DEG
= 1.0

DEG = 1.0 DEG = 1.0

17/29

Experiments conducted to investigate:

1. Intra (e.g. within) problem type learning and problem solving

2. Inter (e.g. across) problem type learning and problem solving

Problem types considered to date:

� Towers of Hanoi, Water Jugs

Experiments and Results

� Towers of Hanoi, Water Jugs

� Job Shop Scheduling (JSS)

� Map Coloring

� Radio Frequency Assignment Problem (RFAP)

� N-Queens

� Random CSP’s

� Vehicle Routing Problem (VRP)

18/29

Experiment 1:
Intra-Problem Solving and Learning

Map Coloring Problem

4.5

6

C
o

n
s
is

te
n

c
y
 C

h
e
c
k
s
 (

x
 1

0
0
0
)

Benchmark

Hyper-heuristic (Scaled)

Hyper-heuristic (Custom)

9

12

D
e
c
is

io
n

s
 (

x
1
0
0
)

Benchmark

Hyper-heuristic (Scaled)

Hyper-heuristic (Custom)

19/29

0

1.5

3

10 25 50 100

 Problem Complexity (Size)

C
o

n
s
is

te
n

c
y
 C

h
e
c
k
s
 (

x
 1

0
0
0
)

0

3

6

10 25 50 100

 Problem Complexity (Size)

D
e
c
is

io
n

s
 (

x
1
0
0
)

Learned non-max/min texture based rules delivery superior problem-solving
performance over traditional heuristics

Job Shop Scheduling Problem

45

60

C
o

n
s
is

te
n

c
y
 C

h
e
c
k
s
 (

x
1
0
0
0
)

Benchmark
Hyper-heuristic (Scaled)
Hyper-heuristic (Custom)

15

20

D
e
c
is

io
n

s
 (

x
1
0
0
)

Benchmark

Hyper-heuristic (Scaled)
Hyper-heuristic (Custom)

Experiment 1:
Intra-Problem Solving and Learning

20/29

0

15

30

16 25 36 49 64 81

 Problem Complexity (Size)

C
o

n
s
is

te
n

c
y
 C

h
e
c
k
s
 (

x
1
0
0
0
)

0

5

10

16 25 36 49 64 81

 Problem Complexity (Size)

D
e
c
is

io
n

s
 (

x
1
0
0
)

Learned non max/min texture based rules can scale to deliver superior
problem-solving performance over traditional heuristics

Experiment 2:
Inter-Problem Solving and Learning

Map Coloring Problem

4.5

6

C
o

n
s
is

te
n

c
y
 C

h
e
c
k
s
 (

x
 1

0
0
0
)

Benchmark

Hyper-heuristic (MCP)

Hyper-heuristic (JSP)

Hyper-heuristic (FAP)

Hyper-heuristic (NQP)

9

12

D
e
c
is

io
n

s
 (

x
1
0
0
)

Benchmark

Hyper-heuristic (MCP)

Hyper-heuristic (JSP)

Hyper-heuristic (FAP)

Hyper-heuristic (NQP)

21/29

0

1.5

3

10 25 50 100

 Problem Complexity (Size)

C
o

n
s
is

te
n

c
y
 C

h
e
c
k
s
 (

x
 1

0
0
0
)

0

3

6

10 25 50 100

 Problem Complexity (Size)

D
e
c
is

io
n

s
 (

x
1
0
0
)

Learned rules while solving one problem type can be successfully be applied in
solving different problem types and deliver superior problem-solving
performance

Experiment 2:
Inter-Problem Solving and Learning

Job Shop Scheduling Problem

45

60

C
o

n
s
is

te
n

c
y
 C

h
e
c
k
s
 (

x
1
0
0
0
)

Benchmark

Hyper-heuristic (JSP)

Hyper-heuristic (MCP)

Hyper-heuristic (FAP)

Hyper-heuristic (NQP)

15

20

D
e
c
is

io
n

s
 (

x
1
0
0
)

Benchmark
Hyper-heuristic (JSP)
Hyper-heuristic (MCP)
Hyper-heuristic (FAP)
Hyper-heuristic (NQP)

22/29

0

15

30

16 25 36 49 64 81

 Problem Complexity (Size)

C
o

n
s
is

te
n

c
y
 C

h
e
c
k
s
 (

x
1
0
0
0
)

0

5

10

16 25 36 49 64 81

 Problem Complexity (Size)

D
e
c
is

io
n

s
 (

x
1
0
0
)

Learned rules while solving one problem type can be successfully be applied in
solving different problem types that scale and deliver superior problem-solving
performance

Issues with Subgoaling-Chunking (Soar 8.6.3):

• Chunk preferences are fixed (drawback)

• Chunking - subgoaling, allows us to “look-ahead” (benefit)

Issues with Reinforcement Learning (RL, Soar 9.0):

• RL rules can change numerical preferences (benefit)

Design of CHS-Soar-RL

• RL rules can change numerical preferences (benefit)

• Does not allow us to subgoal in order to “look-ahead” (drawback)

Design goal of CHS-Soar-RL is to combine the benefits of both

• Allow us to “look-ahead”

• Use RL which allow num. preferences to change

23/29

Design of CHS-Soar-RL
How can we “look-ahead” with RL?

24/29

Design of CHS-Soar-RL
How can we “look-ahead” with RL?

25/29

Design of CHS-Soar-RL
How can we “look-ahead” with RL?

26/29

� Demonstrated integration of rule and constraint based reasoning

� Demonstrated CHS-Soar ability to reason about a small group of well known variable and

value texture measures leading to improved solutions over traditional unary heuristics

� Demonstrated the ability to learn hyper-heuristics while solving one problem type can be

successfully be applied in solving different problem types and deliver superior problem-

solving performance over traditional combinations of unary heuristics

Nuggets

27/29

� Soar’s rule based encoding dramatically expands the expressiveness of the hyper-

heuristic by encoding the constituent textures of each heuristic-not simply the low level

heuristics

� Limited only to CSP problems (and challenge of CSP representation)

� Effort to calculate textures can outweigh benefits

� Many “intermediate” texture measures evaluations provide no insight

� Textures are “proxies” for actual variables and value leads to random selections

Coal

28/29

� Scalability or results to more realistic CSP problems?

� Ability to export results for other CP solvers (i.e. ILOG) to use

Questions

Introducing Constrained Heuristic Search
to the
Soar Cognitive Architecture

29/29

