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Bottom-Up Learning
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Construct higher-level goals
To fulfill lower level preferences Aggregate sub-goals into chunks



Constructivist Epistemology

• Piaget

– Schemas are the basic building blocks for cognition

– They are hierarchically constructed

• Implement a bottom-up mechanism of schema • Implement a bottom-up mechanism of schema 

construction

Provides agents with a way to organize their behavior so that we 
can infer they have goals, knowledge and emotions when we 
observe their activity.
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The Schema Mechanism

• Drescher, G. L. (1991). Made-up minds, a 

constructivist approach to artificial 

intelligence. Cambridge, MA: MIT Press.

– Schema = (context, action, result)– Schema = (context, action, result)

• Implemented and working but

– Not scalable

– No sequence learning
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Self Segmentation of Sequences

• Sun, R., & Sessions, C. (2000). Automatic 

segmentation of sequences through hierarchical 

reinforcement learning. 

– Sequence learning is the start

• Implemented and working but

– No schema management
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2. The model

• Use schemas as: 

– (context, action, expectation)

• Use reinforcement learning (Soar 9): • Use reinforcement learning (Soar 9): 

• Do hierarchical sequence learning of schemas: 

– context = sub-schema + status

– intention = sub-schema + status

– satisfaction = satisfaction(context) + satisfaction(intention)

– weight = number of enactions
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Simple tasks

SucceedFail

Time

A F B S B S B S B S 

Schema: (nil, AF,-1,1) (AF, BS,0,1) (BS, BS,2,w)

(-1) (1)

A B

Time

A S B S A S B S A S 

Schema: (AF,AS,0,w) (AS,AF,0,w)…
(AS,BS,2,w) (BS,AS, ,2,w)…
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More difficult tasks

Time

A F A S B F B S A F A S B F B S

Tertiary
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S1 = (AF,AS,0,w) S2 = (BF,BS,0,w) 

S3 = (S1S,S2S,0,w) S4 = (S2S,S1S,0,w) 

A = (press A,1) B = (press B,1) TimeElementary

Primary

Secondary

S5 = (S3S,S4S)Tertiary

S = (S1S,BF,-1,w) 

S = (AF,AF,-2,w)



Interaction cycle

Select schema /
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Activity trace

Time
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Soar memory model
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<ltm> (long-term memory) <stm> (short-term memory)

<sch3> (schema 3)

<act1> (context) <act2> (intention) 0 (satisfaction) 3 (weight)

<sch1> F (status) <sch2> S (status)

^sch

<act3> (act 3)

S (status)
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First steps in space
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Discussion

• Quite different from classical Soar models:

– Does not use impasse mechanism nor chunking

– Does not use the reward mechanism in RLSoar

– Does not use the stochastic exploration policy

• Can be stuck in non-optimum solutions: bounded rationality

• But Soar helps a lot:

– Does use the pattern matching principles

• Multi value attribute

– Does use Soar 9's preference mechanism
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Conclusions

• Coal

– It is very low level

– Long way to go before complex task learning 

• Gold• Gold

– It works!

– It shows that Bottom-up learning can be implemented in 

Soar.

– Suggests another type of knowledge representation

– Includes contest 

– No immediate obstacles in the way
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