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Soar for Long-Lived Agents?

» Someday Soar agents will exist for
months.

- |s a pile of C (+ C++) code that has been
patched and hacked on forl5 years up to

it?
» Is Bob Doorenbos’ thesis really true?
- Have we avoided screwing it up?

« Q1: Can Soar run for a long time without
slowing down or crashing?

= Q2: Can Soar run with lots of rules without
* slowing down or crashing?




Doorebos’ Thesis Results
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Figure 5.8: Match cost with Rete/UL.




Why Now?

» Fast Machines (~1,000X cognitive real-
time)

= Big Memories (8 Gigs on my laptop)

= 64-bit Soar

- gp command makes It easy to generate
millions of rules



Q1: Can Soar Run For a Long
Time?

- What is a long time?
- 20 dec/sec * 60 sec/min * 60min/hour * 24hr/day=
- 1,728,000 dec/day
- 2,000,000 dec ~ day of simulated time
- 1,000,000,000 dec ~ 500 days of simulated time
- 5,000,000,000 dec ~ 2,500 days ~ 7 years
Tasks
- Simple as possible — wait
1 rule fire/decision, 4 wmc/decision, 44 rules, Soar 9.0.0
- Simple 3 block world —
8.6 rules/decision, 25 wmc/decision, 6092 rules, Soar 9.0.1
What to measure?

- Basic agent level activity = working memory
changes/second

Hardware:
- Core2 6600@2.4GHz, 3GB RAM, Windows XP
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Results Q1: Run a long time?

Simple Wait Task
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Results Q2: Large numbers of
rules?
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Blocks world task — 10,000,000 decisions

9 rules = core task
2785 rules = + all non-RL rules on my computer
6092 rules = + HRL blocks world

... rules = + extra RL rules for blocks world
[possible matching to 4-20 tokens]

Blocks World

17,560,093 rules
@ > 10M decisions
51M WM Changes
msec/wmc 151 sec. total CPU"
~7-8 Gbytes Memory

*scaled time from 64b Lapt
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Conclusion

= Nuggets:

- Soar can run for a long (simulated) time...
About 24 hours

- Soar scales to large number of rules
= Coal:

- Soar still slows down with expensive rules
- Other memories don’t scale as well (EpMem)
- Still need full conversion to 64bit

- Might be some overhead in decision procedure



JSoar vs. CSoar — Simple &
Long

Simple wait task — 1 rule fire/decision, 44 total rules
2.93 GHz T9800 Core2 Duo, 64-bit, Vista, 8 GB —|Soar.0.7.1
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JSoar vs. Csoar — Lots of Rules

Blocks World with 2700 rules
2.93 GHz T9800 Core2 Duo, 64-bit, Vista, 8 GB
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JSoar vs. Csoar — Lots of

Activity

Count-Test [20,000] 44 rules, exercises substates, results, wm changes, ...
2.93 GHz T9800Core2 Duo, 64-bit, Vista, 8 GB
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