Millions of Rules, Billions of

Decisions

John Laird, University of Michigan
29" Soar Workshop
June 2009




Soar for Long-Lived Agents?

» Someday Soar agents will exist for
months.

- |s a pile of C (+ C++) code that has been
patched and hacked on forl5 years up to

it?
» Is Bob Doorenbos’ thesis really true?
- Have we avoided screwing it up?

« Q1: Can Soar run for a long time without
slowing down or crashing?

= Q2: Can Soar run with lots of rules without
* slowing down or crashing?




Doorebos’ Thesis Results

0.12
('4
¢

e——0——=© Sched

0.10

& -0———0 Assembler

()
(o}
103

0.08

SCA-Randpm
Dispatcher

© 6——=0 Radar
6——6——90 SCA-Fixed

0.04
I

N
J

oo

(o ¥0]

o))

o0

(o]

Mean match time per change to working memory (msec)
0.06
|

0.02
|

0.0

T T T T |
0 20000 40000 60000 80000 100000 120000

Number of productions in system

Figure 5.8: Match cost with Rete/UL.




Why Now?

» Fast Machines (~1,000X cognitive real-
time)

= Big Memories (8 Gigs on my laptop)

= 64-bit Soar

- gp command makes It easy to generate
millions of rules



Q1: Can Soar Run For a Long
Time?

- What is a long time?
- 20 dec/sec * 60 sec/min * 60min/hour * 24hr/day=
- 1,728,000 dec/day
- 2,000,000 dec ~ day of simulated time
- 1,000,000,000 dec ~ 500 days of simulated time
- 5,000,000,000 dec ~ 2,500 days ~ 7 years
Tasks
- Simple as possible — wait
1 rule fire/decision, 4 wmc/decision, 44 rules, Soar 9.0.0
- Simple 3 block world —
8.6 rules/decision, 25 wmc/decision, 6092 rules, Soar 9.0.1
What to measure?

- Basic agent level activity = working memory
changes/second

Hardware:
- Core2 6600@2.4GHz, 3GB RAM, Windows XP

(G20 |



Results Q1: Run a long time?

Simple Wait Task

0.005 44 rules
0.004 o—0 * * @ > 5B decisions
Y 0.003 20B WM changes
e 0.002 83,688 sec. total CPU
© ool —o—rmsecinme = ~23.25 hours
0 T r
0 1 2 3 4 5

Decisions in Bllions

Blocks World

e=f==msec/wmc

3

Decisions in Billions



oo n 2

Results Q2: Large numbers of
rules?

0.005

0.004

0.003

0.002

0.001

Blocks world task — 10,000,000 decisions

9 rules = core task
2785 rules = + all non-RL rules on my computer
6092 rules = + HRL blocks world

... rules = + extra RL rules for blocks world
[possible matching to 4-20 tokens]

Blocks World

17,560,093 rules
@ > 10M decisions
51M WM Changes
msec/wmc 151 sec. total CPU"
~7-8 Gbytes Memory

*scaled time from 64b Lapt
1 10 100 1000 10000 100000 1000000 10000000 100000000 scaled ime from aptop

Rules



Conclusion

= Nuggets:

- Soar can run for a long (simulated) time...
About 24 hours

- Soar scales to large number of rules
= Coal:

- Soar still slows down with expensive rules
- Other memories don’t scale as well (EpMem)
- Still need full conversion to 64bit

- Might be some overhead in decision procedure



JSoar vs. CSoar — Simple &
Long

Simple wait task — 1 rule fire/decision, 44 total rules
2.93 GHz T9800 Core2 Duo, 64-bit, Vista, 8 GB —|Soar.0.7.1

0.9
0.8
0.7
06 JSoar
0.5

0.4 N

0.3
0.2 CSoat
0.1
0
1 10 100 1000 10000

O o -0 o un

Thousands of Decisions

60
50 -
40
30
20
10

1Snoar/C<Anar

VI U\ JUd

o -~ 3

5.04x
¢

1 10 100 1000 10000

Thousands of Decisions




JSoar vs. Csoar — Lots of Rules

Blocks World with 2700 rules
2.93 GHz T9800 Core2 Duo, 64-bit, Vista, 8 GB

i
M g'g NG
¢ o5 N\
" 04 N\
D 03 N\
e oo CSoar
0, , L L I‘
1 10 100 1000 10000
Thousands of Decisions
25
R 20
a 15 JSoar/CSoar
Lo
2.7X
o 5 ———
—— —0- —0
1 10 100 1000 10000

Thousands of Decisions




JSoar vs. Csoar — Lots of

Activity

Count-Test [20,000] 44 rules, exercises substates, results, wm changes, ...
2.93 GHz T9800Core2 Duo, 64-bit, Vista, 8 GB

0.7
b 06 JSoar
e 0.5
¢ 0.4
/
S 0.3
. 02 CSoar
c 0.1
0 L} L ‘ L L L ‘ 1
0 50 100 150 200 250 300
Thousands of Decisions
20
JSoar/CSoar
R 15 ’L
a
t 10 /
i
) 5
0 L} L L L L 1
0 50 100 150 200 250 300

Thousands of Decisions




