
Limited Parallel Operators for
Soar

John Laird, University of MichiganJohn Laird, University of Michigan
2929thth Soar WorkshopSoar Workshop

June 2009June 2009

� Within Module Implementation:
� Production match (Gupta et al., 1986;

…)
� Parallel episodic/semantic memory

search
� Within Module Execution

� Parallel production firing (XAPS; Soar
1-9)

Possible Levels for Parallelism in Possible Levels for Parallelism in
SoarSoar

Symbolic Short-Term Memory

Symbolic Long-Term Memories
Procedural

ChunkingReinforcement
Learning

Semantic

Semantic
Learning

Episodic

Episodic
Learning

F
ee

lin
g

G
en

er
at

io
n

Semantic
Learning

1-9)
� Parallel retrievals from

episodic/semantic
� Multi-Module Execution

� Modules run asynchronously (ACT-R)
� Multi-Module Implementation

� Modules on separate cores (Ray, 2010)
� Deliberation

� Parallel operators (Newell &
Rosenbloom)

� Task Level
� Multiple goals (Chong, 1997)

� Multi-agent
2

Symbolic Short-Term Memory

Body

Decision
Procedure

Perception Action

Visual
Imagery

F
ee

lin
g

G
en

er
at

io
n

� Increase module-level parallelism
� Could eventually lead to faster implementation

� Eliminates need to control sequential processing
� Currently must ensure that there is no operator

“starvation”

Advantages of OperatorAdvantages of Operator--level level
ParallelismParallelism

“starvation”
� Improve reactivity

� Example situation
� Agent ready to act in world, retrieve for episodic

memory, and do internal reasoning
� Currently must select one to go first (possibly at

random)
� Must make sure it at some point initiates others

3

“To enable further research on task-level
parallelism we have added the experimental
ability to simultaneously select multiple problem
space operators within a single problem solving
context. Each of these operators can then

Prior Approach/IdeaPrior Approach/Idea

context. Each of these operators can then
proceed to execute in parallel, yielding parallel
subgoals, and ultimately an entire tree of
problem solving contexts in which all of the
branches are being processed in parallel. We
do not yet have enough experience with this
capability to evaluate its scope and limits.”

� Rosenbloom, Laird, Newell, & McCarl, 1991
4

1. Conflicting actions between parallel
operators.

� Operator applications from different operators
are where the problem can arise

Potential Issues with Prior Potential Issues with Prior
ProposalProposal

are where the problem can arise
� Different than parallel rules that are part of

same operator which are designed/learned to
cooperate.

2. No architectural constraint on parallelism
� Processing in substates can grow exponentially

5

� A small number of fixed slots for operators
based on where they can create/modify
WMEs
� ^operator: modify non-buffer working memory

Proposal: More Operator SlotsProposal: More Operator Slots

� ^operator: modify non-buffer working memory
� ^operator.type cognitive: “Cognitive operators”

� ^operator.type output: modify output-link
� Multiple output slots for independent motor

subsystems?

� ^operator.type epmem: modify ep. memory cue
� ^operator.type smem: modify sem. memory cue
� ^operator.type SVS: modify SVS cue6

� Rules propose, evaluate, apply operators in
parallel
� Apply rules can test all of working memory except

other operator slots

More DetailsMore Details

other operator slots
� Apply rules can change only their own buffer

� Can enforce at load time.

� Data modularization eliminates potential action
conflicts

� Operators are synchronized to decision cycle

7

Parallel Operator PictureParallel Operator Picture

^operator-epmem.name A

^operator-epmem.name B

^operator-epmem.name C

^operator-epmem.name D

A > B

C > D

A = C

Decide A

Apply A

^operator-output.name O

8

^operator-output.name O

^operator-output.name P

^operator-output.name Q

O > P

P > Q Decide O

Apply O

^operator.name W

^operator.name X

^operator.name Y

^operator.name Z

W = .9

X = .85

Y = .95
Decide Y

Apply Y

Z -

� Assume cognitive operator is the only one
where progress is necessary.
� Only operator where state no-change can

arise.

Impasses: General IdeasImpasses: General Ideas

arise.
� Other operators can “stall” without impasse

� Can have multiple tie/conflict impasses at
the same time.

� Want to avoid explosion in
impasses/substates.

9

� Multiple active impasses
� Operator slots without impasses continue

select/apply
� Maintains reactivity better than current Soar!

Impasse/Substate Proposal Impasse/Substate Proposal

� Maintains reactivity better than current Soar!

10

� Generate independent substate for each
impassed operator slot

� Within those substates, only single cognitive
operator selection is allowed

Tie/Conflict Impasse ProposalTie/Conflict Impasse Proposal

operator selection is allowed
� Results are preferences or state elaborations
� Maintains compartmentalization
� Avoids multiplicative growth in

impasses/substates

11

� Need to maintain compartmentalization of
operator application knowledge learned
from substates and via chunking.

� If processing in a substate creates results

Key issue for other impassesKey issue for other impasses

� If processing in a substate creates results
that modify a different other WM buffers
will learn “illegal” chunks.

12

Key Issues: Modification in Key Issues: Modification in
SubstatesSubstates

O-
Cognitive

Hard to prevent modification to buffers during
cognitive operator impasse

13

O-Output O-Epmem O-SMem
O-

Cognitive

� Need to maintain compartmentalization of operator
application knowledge even after chunking:

� Proposal 1:
� Only cognitive operator can have no-change
� All other operators must have complete rule sets for

application

Operator NoOperator No--Change Change
Impasses?Impasses?

application
� Proposal 2:

� Separate substates for each no-change.
� Can have cognitive operators internal to the substate
� All results must be restricted to operator’s buffer

� How can this be enforced?

� Proposal 3:
� Ideas from the audience??

14

� Coal
� Still unresolved issues in how to maintain

closure with chunking.

� Nuggets

ConclusionConclusion

� Nuggets
� Relatively complete proposal to add limited

operator parallelism
� Improve reactivity
� Eliminate unnecessary control sequencing
� Eliminate some forms of substate juggling

15

