
Thoughts on
the future of HLSR

Bob Marinier, SoarTech

29th Soar Workshop

June 2009

What is HLSR?

� High-Level Symbolic Representation
language for cognitive architectures

� An attempt to reduce the cost of developing
behavior models by:

2

behavior models by:

� Reducing the amount of code one needs to write

� Making code easier to understand and maintain

� A compiler (HLSR language->Soar/ACT-R)

� Each HLSR language construct has a
microtheory that dictates how it is realized on a
particular architecture

Primary HLSR constructs

� Relations (type definitions)

� Can instantiate as facts

� Can retrieve facts of particular types

� Transforms (sequences)

3

� Transforms (sequences)

� Explicit support for atomic sequences

� Activation tables (decision logic)

� Puts related logic together in one place

relation Disk(name isa string, size isa integer)
relation Peg(name isa string)
relation NextSmallestDiskOnPeg(current isa Disk, next isa Disk, peg isa Peg)
(

SmallerThan(next, current)
DiskIsOnPeg(next, peg)
forall d isa Disk
if (SmallerThan(d, current))

Relations: Example

4

if (SmallerThan(d, current))
then (!SmallerThan(next, d) or !DiskIsOnPeg(d, peg))

)

� Current
� Strongly typed

� Can be “i-supported” or
“o-supported”

� No extra conditions
necessary to connect to
state

� Future Work
� Mutability (e.g., null)

� Enumerations

� Type hierarchies

transform UpdateMapCell(mapCell isa MapCell, contents isa string) (
consider-if(MapCellOutdated(mapCell, contents))
body(

new<MapCell>(mapCell.x, mapCell.y, contents)
reconsider(mapCell)

)
)

Transforms: Example

5

� Current
� Atomic sequences

� Can be invoked
explicitly (like a
function call) or
automatically
(consider-if)

� Future Work
� Branching

� Unordered actions
(esp. for output)

� Polymorphism

Soar: Covering a space of
conditions for possible actions

� Propose an operator for each action

� Each operator proposal contains some
combination of conditions

� Seeing what parts of space are covered is hard
� Conditions are spread across separate proposals

6

� Conditions are spread across separate proposals

� Proposals often spread out all over multiple files
(VisualSoar encourages this, SoarIDE doesn’t help
prevent it)

� Ex: TankSoar simple-bot selects the top-level goal
using 7 proposals across 4 files

HLSR: Covering a space of
conditions for possible actions

� Insight: condition combinations are
like a truth table, which can be
compactly represented

� HLSR embodies this in an activation

7

� HLSR embodies this in an activation
table

�Cross-cutting logic (aspect-oriented
programming)

Activation tables: Example
This is (almost) the exact logic from TankSoar simple-bot
activation-table SelectGoal (

conditions (
1: MissilesEnergyLow()
2: sensed(Incoming(true, *))
3: InRadarContact()
4: sensed(Sound("silent"))

8

4: sensed(Sound("silent"))
)
actions (

[F*T*]: (new-goal<OutOfRadarContact>()) # Attack
[F*FF]: (new-goal<InRadarContact>()) # Chase
[*FFT]: (new-goal<InContact>()) # Wander
[T**F]: (new-goal<OutOfContact>()) # Retreat
[T*T*]: (new-goal<OutOfContact>()) # Retreat
[TT**]: (new-goal<OutOfContact>()) # Retreat
[*TFT]: (new-goal<OutOfContact>()) # Retreat

)
)

Activation tables

� Current

� Related logic
grouped together
in one place

� Future

� IDE support for
coverage

� Support for
� Easier to see

coverage

� Support for
context conditions

9

Learning in HLSR

� Learning is not currently implemented
in HLSR, but there are at least two
ways it could be supported
� Learning at the HLSR level

10

� Learning at the HLSR level
� E.g., RL-like mechanism for tuning which

action to execute when there are multiple
options

� Learning at the microtheory level
� HLSR compiles to generic constructs;

architectural learning mechanisms can
improve those “behind the scenes”

Some other things to note
(more nuggets and coal)

� Current
� Supports OR logic
� In principle, can support

multiple microtheories

� Future

� Improve goal semantics

� Improve generated code
(less verbose/more
efficient in terms of

11

efficient in terms of
operators)

� Stability improvements
(develop larger, more
complex agents)
� Note: support for more

complex constructs
undermines stability

