Thoughts on
the future of HLSR

Bob Marinier, SoarTech
29t Soar Workshop
June 2009

What is HLSR?

High-Level Symbolic Representation
language for cognitive architectures

An attempt to reduce the cost of developing
behavior models by:

B Reducing the amount of code one needs to write
B Making code easier to understand and maintain

A compiler (HLSR language->Soar/ACT-R)

B Each HLSR language construct has a
microtheory that dictates how it is realized on a
particular architecture

Primary HLSR constructs

Relations (type definitions)
B Can instantiate as facts
B Can retrieve facts of particular types

[ransforms (sequences)
B Explicit support for atomic sequences

Activation tables (decision logic)
B Puts related logic together in one place

Relations: Example

relation Disk(nane isa string, Size isa integer)
rel ati on Peg(nane isa string)
rel ati on Next Smal | est D skOnPeg(current isa Disk, next isa D sk, peg isa Peg)
(
Smal | er Than(next, current)
Di skl sOnPeg(next, pegQ)
forall d isa D sk
I f (Smal |l er Than(d, current))
then (! Smal | er Than(next, d) or ! D sklsOnPeg(d, peg))

0 Current [0 Future Work
B Strongly typed m Mutability (e.g., null)
B Can be “i-supported” or B Enumerations
“o-supported” ® Type hierarchies

B No extra conditions
necessary to connect to
state

Transforms: Example

t ransf or m Updat eMapCel | (mapCel | isa MapCell, contents isa string) (
consi der-if(MpCel | Qut dat ed(mapCel |, contents))
body(
new<MapCel | >(mapCel | . x, mapCel | .y, contents)
reconsi der (mapCel |)

Current Future Work

B Atomic sequences B Branching

B Can be invoked B Unordered actions
explicitly (like a (esp. for output)
function call) or B Polymorphism

automatically
(consider-if)

Soar: Covering a space of
conditions for possible actions

[0 Propose an operator for each action

[0 Each operator proposal contains some
combination of conditions

[0 Seeing what parts of space are covered is hard

Conditions are spread across separate proposals

Proposals often spread out all over multiple files
(VisualSoar encourages this, SoarIDE doesn’t help
prevent it)

Ex: TankSoar simple-bot selects the top-level goal
using 7 proposals across 4 files

HLSR: Covering a space of
conditions for possible actions

Insight: condition combinations are
like a truth table, which can be
compactly representec

HLSR embodies this in an activation
table

B Cross-cutting logic (aspect-oriented
programming)

Activation tables: Example

This is (alnost) the exact logic from TankSoar sinpl e-bot
activation-table Sel ectGal (
condi tions (
1: M ssilesEnergyLow()
2. sensed(lncomng(true, *))
3: I nRadar Cont act ()
4. sensed(Sound("silent"))

)

actions (
[F*T*]: (new goal <Qut Of Radar Contact>()) # Attack
[F*FF] : (new goal <l nRadar Cont act>()) # Chase
[*FFT]: (new goal <l nCont act >()) # \Wander
[T**F]: (new goal <Qut Of Contact>()) # Retreat
[T*T*]: (new goal <Qut O Contact>()) # Retreat
[TT**]: (new goal <Qut O Contact>()) # Retreat
[*TFT]: (new goal <Qut O Contact>()) # Retreat

)

Activation tables

Current Future

B Related logic B IDE support for
grouped together coverage
in one place m Support for

B Easier to see context conditions

coverage

Learning in HLSR

Learning is not currently implemented
in HLSR, but there are at least two
ways it could be supported

B Learning at the HLSR level

[0 E.g., RL-like mechanism for tuning which
action to execute when there are multiple
options

B [earning at the microtheory level

[0 HLSR compiles to generic constructs;
architectural learning mechanisms can
improve those “"behind the scenes”

10

Some other things to note
(more nuggets and coal)

[0 Current [0 Future

= Supp_ort_s OR logic B Improve goal semantics
B In principle, can support

multiple microtheories B Improve generated code
(less verbose/more

efficient in terms of
operators)

B Stability improvements
(develop larger, more
complex agents)

[0 Note: support for more
complex constructs
undermines stability

11

