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Why computer games? Why Mario? 

� Computer games

� Complex, can have really large, continuous state and 

action spaces.

� Reasoning and learning required at many levels

� Sensory-motor primitives

� Path planning

� Strategy

� Knowledge learned in one level should be applicable in 

other levels of the game. 

� Exciting to watch Soar play!

� Infinite Mario

� Parameterized domain from RL Competition 2009

� Easy interface (RL-glue)
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Domain

� Visual space

� 16 x 22 tiles in visual scene, 
each tile can have 13 different 
values

� 9 kinds of monsters, can be 
anywhere, agent knows their 
exact location, speed, type

� Reasonable action space

� Left, Right, Stay, Jump and 
Speed Toggle (12 combinations).

� Reward 

� 100 to reach finish line

� -1 for every step in the 
environment

� +1 killing monster, taking coin 
etc

� -10 for dying

� Not real time.

� Sample Agent

� Memory of last episode

� Levels

� 0-3
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How should states be represented?

Simple RL - agent

State – [5 x 5] Tiles around 

Mario 

Action space – Primitive Action space – Primitive 

Actions,- left, right, still 

jump, speed
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Simple RL agent - Results

� Reasons

� Huge state space!

� Rewards too far into 
future.

� A large number of steps 
required to complete on required to complete on 
episode

Also, a policy if ever 
learned, might not help 
in other instances of the 
game.     
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Different way to look at the problem…

� Object oriented 
representation* of state
� From low level tile by tile 
representation to a view 
composed of objects and their 
relationships with the agent.

� From “the tile at position (x,y) is 
of type t” or “the agent is at tile of type t” or “the agent is at tile 
(x,y)” to “pit P is at a distance of 
3.5 tiles on x -axis”.

� Features like pits, pipes, 
platforms etc extracted from the 
lower level data using simple 
heuristics.

Can be accounted for as 
background knowledge.

*Diuk, Cohen and Littman, “An object-oriented representation for efficient reinforcement learning”, in proceedings of 
ICML 2008 

pit <p>
<p> ^distx 3.5
<p> ^disty -5
<p> ^width 2
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Operator/Action abstraction
� Make a distinction between key-stroke level operators (KLOs) and 
functional level operators (FLOs)
� KLOs – primitive actions (left, right jump etc in present case)

� FLOs – collection of KLOs executed in a sequence to perform a specific task

� Key observations from GOMS* analysis on HI-Soar
� Games have a limited number for FLOs (depends different categories of 
objects present )

� Human experts decide between different FLOs  using very local and � Human experts decide between different FLOs  using very local and 
immediate conditions / features (like distance from monsters, coins etc)

� Example FLOs – tackle_monster, grab_coin, search_question

� How does this help?
� Provides structure to the problem.

� When agent executes a FLOs, it has an immediate goal to attend like 
getting rid of the monster.

� Learning is easier, similar to HRL 

*John B. E. Extensions of GOMS analyses to expert performance requiring perception of dynamic visual and auditory 
information. In proceedings of CHI 1990 
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Operator Hierarchy

Grab Coin
Search 

Question
Tackle 

Monster
Avoid Pit

Complete 
Game

Move to 
Goal

State defined by 
‘near’ness of an object.
Is monster A close 
enough to be a threat? 
etc

Grab Coin
Question Monster

Avoid Pit

Move 
Left/Right

Jump  
Yes/No

Speed 
High/Low

Grab Coin 
C2

Grab Coin 
C1

Goal

State defined by exact 
distance of an object.
Monster A is at a 
distance on 3.5 tiles on 
x axis. (discrete)
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How it works…

� Objects from the sensory input are extracted and 
elaborated to have a relational (with Mario) 
representation. 

� All objects in “close” vicinity cause FLO proposals.

The agent makes a selection between these operators � The agent makes a selection between these operators 
based on hard coded/ learned preferences.

� Agent goes into a sub-goal to execute the FLO; FLO 
proposes lower, keystroke-level operators.

� Primitive actions are executed, environment steps, 
produces a reward and next set of sensory data.

10



Agent with hard-coded FLO preferences

Grab Coin
Search 

Question
Tackle 

Monster
Avoid Pit

Complete 
Game

Move to 
Goal

Grab Coin
Question Monster

Avoid Pit

Move 
Left/Right

Jump  
Yes/No

Speed 
High/Low

Grab Coin 
C2

Grab Coin 
C1

Goal
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Agent with learned FLO preference

Grab Coin
Search 

Question
Tackle 

Monster
Avoid Pit

Complete 
Game

Move to 
Goal

Grab Coin
Question Monster

Avoid Pit

Move 
Left/Right

Jump  
Yes/No

Speed 
High/Low

Grab Coin 
C2

Grab Coin 
C1

Goal
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Hard coded FLO 

preferences.

Learned FLO 

preferences.
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How good is the current design?

� Good at simple scenarios where decisions affected by 

only one object in the vicinity.

� In case there are more than one objects, the 

preference is clear,

� Dealing with monster has higher preference than Dealing with monster has higher preference than 

collecting coins. 

� In case of multiple objects have to be considered 

together, the agent fails to learn a good policy
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Grab Coin
Search 

Question
Tackle 

Monster
Avoid Pit

Complete 
Game

Move to 
Goal

Trouble

Grab Coin
Question Monster

Avoid Pit

Move 
Left/Right

Jump  
Yes/No

Speed 
High/Low

Tackle 
Monster 1

Tackle 
Monster2

Goal
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Example scenarios
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Next question to ask…

� When operators (KLOs) have conflicting preferences 

due to different objects, what constitutes a good 

policy? How can it be learned?

What is a ‘conflict’? How can it be detected?� What is a ‘conflict’? How can it be detected?
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Some ideas -

� ‘Learn’ more specific rules.
� For Objects A and B, the agent has learned independent 
policies for A, B.

� If both A and B are encountered, previously leaned policies 
are split as policies for -

� A ^ !B

� !A ^ B

� A ^ B (to be learned from more experience)

� Move beyond Reinforcement Learning –

� The situation causes an impasse.

� Agent uses other tools like episodic memory or mental 
imagery and spatial reasoning to deal with the current 
situation and chunks the information.
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Finally…

� Nuggets

� Relational, object oriented representations used in 
reinforcement learning.

� Imposing hierarchy facilitates better learning, better 
organization.

� Generalized learning

� Coal

� Multiple object affecting decision still a problem.

� Using templates makes it slow (can not be used in a 
real time games)

� Using gp causes it to produce large (~million) rules 
quite a few of which are never used.

� Continuous values!
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