

29th Soar Workshop Learning to play Mario

Shiwali Mohan University of Michigan, Ann Arbor

Outline

- Why games?
- Domain
- Approaches and results
- Issues with current design
- What's next...

Why computer games? Why Mario?

Computer games

- Complex, can have really large, continuous state and action spaces.
- Reasoning and learning required at many levels
 - Sensory-motor primitives
 - Path planning
 - Strategy
- Knowledge learned in one level should be applicable in other levels of the game.
- Exciting to watch Soar play!

▶ Infinite Mario

- Parameterized domain from RL Competition 2009
- Easy interface (RL-glue)

Domain

Visual space

- ▶ 16 x 22 tiles in visual scene, each tile can have 13 different values
- 9 kinds of monsters, can be anywhere, agent knows their exact location, speed, type

Reasonable action space

Left, Right, Stay, Jump and Speed Toggle (12 combinations).

Reward

- ▶ 100 to reach finish line
- ► -1 for every step in the environment
- +1 killing monster, taking coin etc
- ▶ -10 for dying

- Not real time.
- Sample Agent
 - Memory of last episode
- Levels
 - **▶** 0-3

How should states be represented?

Simple RL - agent

State – [5 x 5] Tiles around Mario

Action space – Primitive Actions,- left, right, still jump, speed

Simple RL agent - Results

Reasons

- Huge state space!
- Rewards too far into future.
- A large number of steps required to complete on episode

Also, a policy if ever learned, might not help in other instances of the game.

Different way to look at the problem...

Object oriented representation* of state

- From low level tile by tile representation to a view composed of objects and their relationships with the agent.
- From "the tile at position (x,y) is of type t" or "the agent is at tile (x,y)" to "pit P is at a distance of 3.5 tiles on x -axis".
- Features like pits, pipes, platforms etc extracted from the lower level data using simple heuristics.

Can be accounted for as background knowledge.

> 7*Diuk, Cohen and Littman, "An object-oriented representation for efficient reinforcement learning", in proceedings of ICML 2008

Operator/Action abstraction

- Make a distinction between key-stroke level operators (KLOs) and functional level operators (FLOs)
 - KLOs primitive actions (left, right jump etc in present case)
 - FLOs collection of KLOs executed in a sequence to perform a specific task
- Key observations from GOMS* analysis on HI-Soar
 - Games have a limited number for FLOs (depends different categories of objects present)
 - Human experts decide between different FLOs using very local and immediate conditions / features (like distance from monsters, coins etc)
 - Example FLOs tackle_monster, grab_coin, search_question
- How does this help?
 - Provides structure to the problem.
 - When agent executes a FLOs, it has an immediate goal to attend like getting rid of the monster.
 - Learning is easier, similar to HRL

Operator Hierarchy

How it works...

- Description by Objects from the sensory input are extracted and elaborated to have a relational (with Mario) representation.
- All objects in "close" vicinity cause FLO proposals.
- The agent makes a selection between these operators based on hard coded/ learned preferences.
- Agent goes into a sub-goal to execute the FLO; FLO proposes lower, keystroke-level operators.
- Primitive actions are executed, environment steps, produces a reward and next set of sensory data.

Agent with hard-coded FLO preferences

Hard coded FLO preferences.

Learned FLO preferences.

How good is the current design?

- Good at simple scenarios where decisions affected by only one object in the vicinity.
 - In case there are more than one objects, the preference is clear,
 - Dealing with monster has higher preference than collecting coins.
- In case of multiple objects have to be considered together, the agent fails to learn a good policy

Trouble

Example scenarios

Next question to ask...

- When operators (KLOs) have conflicting preferences due to different objects, what constitutes a good policy? How can it be learned?
- What is a 'conflict'? How can it be detected?

Some ideas -

- Learn' more specific rules.
 - For Objects A and B, the agent has learned independent policies for A, B.
 - If both A and B are encountered, previously leaned policies are split as policies for -
 - ▶ A ^ !B
 - ▶ !A ^ B
 - A ^ B (to be learned from more experience)

Move beyond Reinforcement Learning –

- The situation causes an impasse.
- Agent uses other tools like episodic memory or mental imagery and spatial reasoning to deal with the current situation and chunks the information.

Finally...

Nuggets

- Relational, object oriented representations used in reinforcement learning.
- Imposing hierarchy facilitates better learning, better organization.
- Generalized learning

Coal

- Multiple object affecting decision still a problem.
- Using templates makes it slow (can not be used in a real time games)
- Using gp causes it to produce large (~million) rules quite a few of which are never used.
- Continuous values!