
A Pure Java Implementation of SoarA Pure Java Implementation of Soar

Dave Ray

daveray@gmail.com

Agenda

• What and why?

• What's (not) there?

• What's new?

• Performance• Performance

• Nuggets and Coal

• Demo

• Conclusion

What is JSoar?

• 100% Java implementation of Soar

• Open Source, BSD licensed

• Runs on Java SE versions 1.6 and higher

• Started in Fall of 2008 based on Soar 9.0.1• Started in Fall of 2008 based on Soar 9.0.1

• http://jsoar.googlecode.com

Why JSoar?

• It's a fun and educational personal project

"It's like someone who doesn't know "It's like someone who doesn't know
how to drive building a car."

- Anonymous

Why JSoar?

• Native dependencies are a frequent topic on

Soar mailing lists

– System.DllNotFoundException: Unable to load DLL

'CSharp_sml_ClientInterface': The specified 'CSharp_sml_ClientInterface': The specified

module could not be found.

– Native code library failed to load.

java.lang.UnsatisifiedLinkError:

libJava_sml_ClientInterface.jnilib

– etc

Why JSoar?

• Debugging the Soar kernel in C is painful

• Unions, pointer tricks, poor tool support

• Tests are easier to write and run

• Simpler crash diagnosis

Why JSoar?

• Java is a kitchen sink. Easy access to extensive,

often built-in, libraries

• Seamless (no SWIG) integration with a

growing list of alternative languagesgrowing list of alternative languages

– JRuby, Jython, JavaScript, Scala, Groovy, Clojure, …

– And you thought Tcl was dead ☺

• .NET interoperability with IKVM.NET

What's there?

• Base Soar kernel (9.0.1)

– Extensive, automated, functional tests to ensure

compatibility and prevent regressions

• Chunking• Chunking

• Reinforcement learning

• Java API

– Encapsulates kernel while still providing access to

Soar internals if needed

What's not there?

• SML

– No remote debugging

• Rete network save/load

• Episodic Memory• Episodic Memory

• Semantic Memory

• Several small, recent fixes and changes

What's new?

• JSoar debugger

• Improved concurrency

– One thread per agent

– wait RHS function: no busy waiting for input – wait RHS function: no busy waiting for input

• Give your CPU fan a break

• "Real" RHS functions

– Multiple args, as symbols

– Return structures as well as primitives

What's new?

• Additional RHS functions

– java – Call Java code

– debug – Open the debugger

– wait – Pause the agent's thread until new input – wait – Pause the agent's thread until new input

arrives

– get-url – Read from a URL

– to/from-xml – Convert XML (e.g., from a URL) to

working memory

– All java.lang.Math functions

What (else) is new?

• source command works on URLs

– source http://darevay.com/jsoar/waterjugs.soar

• SoarBeans – Auto-convert working memory to

Java objectsJava objects

• QMemory – Dead-simple, thread-safe input

generation

• RSoar – Ruby API (w/ example Twitter

interface)

– Yet another wrapper for Soar

Performance

• JSoar fairs pretty well

in CPU performance

• -server option of JVM

provides significant provides significant

speedup

• Significant startup cost

seen in "max" graph

See http://code.google.com/p/jsoar/wiki/PerformanceTestNotes20090621

Performance

• JVM optimizes at run-time

• JSoar gets faster the longer it runs

Future Plans

• Port Episodic and Semantic Memories

• Finish SML Port (volunteers?)

• Investigate memory usage issues

• Build a cool demo with a cluster of agents • Build a cool demo with a cluster of agents

handling requests behind a JRuby on Rails web

app (or something)

Nuggets

• It works!

• Performs better than expected

• Jon Voigt: "Develop and debug in JSoar,

backport to CSoar"backport to CSoar"

• In use on at least one SoarTech project

• Symbol reference counts are gone

Coal

• Large memory footprint

• Lack of SML support means rewriting interface

code

• Symbol reference counts are gone, but counts • Symbol reference counts are gone, but counts

remain on other structures

JSoar Debugger Demo

Conclusion

• Please give it a try!

• Home: http://jsoar.googlecode.com

• Applet: http://darevay.com/jsoar

• Blog: http://blog.darevay.com/category/soar/• Blog: http://blog.darevay.com/category/soar/

• Thanks

– to SoarTech for supporting this talk

– to Bob Marinier for early, painful debugging and

performance testing

– to Jon Voigt for ongoing bug fixes

OVERFLOW

What's new

• Quick Memory

• Simple, thread-safe input generation

• Programmatic, or command-line

> qset block(red).x-location 1
> qset block(red).y-location 0
> qset block(red).color red
> qset block(blue).x-location 2
> qset block(blue).y-location 0
> qset block(blue).color blue
...
> qset block(red).x-location 2
> qset block(red).y-location 1

^io.input-link
^block
^x-location 2
^y-location 1
^color red

^block
^x-location 2
^y-location 0
^color blue

• See org.jsoar.kernel.io.quick

What's new?

• Convert any working memory to Java beans

^output-link
^move-along-route

^route-name |alpha|
^desired-speed 100.0
^altitude 35.0 class MoveAlongRoute {^altitude 35.0 class MoveAlongRoute {

public String routeName;
public double altitude;
private double speed;

public double getDesiredSpeed(){
return speed;

}

public void setDesiredSpeed(double s){
speed = s;

}
}

• See org.jsoar.kernel.io.beans

