-} j
A Pure Java Implementation of Soar

Dave Ray

daveray@gmail.com

Agenda h @

What and why?
What's (not) there?
What's new?

Performance
Nuggets and Coal
Demo

Conclusion

What is JSoar? h j@

100% Java implementation of Soar

Open Source, BSD licensed

Runs on Java SE versions 1.6 and higher
Started in Fall of 2008 based on Soar 9.0.1

http://jsoar.googlecode.com

Why JSoar? h j@

e It's a fun and educational personal project

"It's like someone who doesn't know
how to drive building a car."

- Anonymous

Why JSoar? h J@

* Native dependencies are a frequent topic on
Soar mailing lists

— System.DIINotFoundException: Unable to load DLL
'CSharp_sml_Clientinterface': The specified
module could not be found.

— Native code library failed to load.
java.lang.UnsatisifiedLinkError:
libJava_sml_ClientInterface.jnilib

— etc

Why JSoar?

«xj

e Debugging the Soar kernel in C is painful

 Unions, pointer tricks, poor tool support

I Locals

MName

=

E @w

HEHEEHBMEERBMg

=]

d

W
w
W st
W
W
attr
w
v
W s
W
W
ral

value
@ var
W id

Value

0x00877250 {id=0x0096f34c attr =0x0092afd8 value=0x0092adc4 ...}
0x0096f34c {var={...}id={...}sc={..} ...}
{common_symbol_info={...} name =0x00000001 <Bad Pir > tc_num=34
{common_symbol_info={...] name_number=1 name_letter='5" 1.}
Jcommon_symbaol_info={...} name=0x00000001 <Bad Ptr > production=
{common_symbol_info={...} value=1}

{common_symbol_info={...} value=8.25547764258515127e-305 }
0x0092afds {var={...}id={...}sc={...} ...}
Jcommon_symbol_info={...} name =0x00333414 te_num=0 ...}
Jeommon_symbol_info={...} name_number=9647124 name_letter=0 ...
J{common_symbol_info={...} name=0x00933414 "“type” production=0x01
{common_symbol_info={...} value=9647124}
{common_symbol_info={...} value =0.00000000000000000 }
0x0092adc4 {var={...} id={...} s "
Jcommon_symbol_info={...} name =0x00332e14 tc_num=0...}
Jcommen_symbel info={...} name number=9645538 name _letter=0 ..,

B Autos | F] Locals (%] Modules | E5] Watch 1 | &g Find Results 1

(%)= variables £2 . “g Breakpoints B = i
Mame Value s
@ this WorkingMemory (id=35)
(= ®w lwmempld=43) |
g acceptable false
o attr StringSymbolImpl (jd=64)
@ chunker_bt_pref null
@ qgds null
B gds_next null
B gds_prev null
@ grounds_tc 0
o id IdentifierImpl (id=66) z

4
I[l: 51 "“type state]l

e Tests are easier to write and run

 Simpler crash diagnosis

Why JSoar? h j@

e Java is a kitchen sink. Easy access to extensive,
often built-in, libraries

e Seamless (no SWIG) integration with a
growing list of alternative languages
— JRuby, Jython, JavaScript, Scala, Groovy, Clojure, ...
— And you thought Tcl was dead ©

 .NET interoperability with IKVM.NET

What's there? h j@

Base Soar kernel (9.0.1)

— Extensive, automated, functional tests to ensure
compatibility and prevent regressions

Chunking
Reinforcement learning

Java API

— Encapsulates kernel while still providing access to
Soar internals if needed

What's not there? ™ j@
SML

— No remote debugging

Rete network save/load

Episodic Memory

Semantic Memory

Several small, recent fixes and changes

What's new?

e JSoar debugger

 Improved concurrency
— One thread per agent

— wait RHS function: no busy waiting for input
e Give your CPU fan a break

e "Real" RHS functions

— Multiple args, as symbols
— Return structures as well as primitives

What's new? h @

e Additional RHS functions

— java — Call Java code
— debug — Open the debugger

— wait — Pause the agent's thread until new input
arrives

— get-url — Read from a URL

— to/from-xml — Convert XML (e.g., from a URL) to
working memory

— All java.lang.Math functions

What (else) is new? ™ j@

source command works on URLs

— source http://darevay.com/jsoar/waterjugs.soar

SoarBeans — Auto-convert working memory to
Java objects

QMemory — Dead-simple, thread-safe input
generation

RSoar — Ruby API (w/ example Twitter
interface)

— Yet another wrapper for Soar

Performance .

* JSoar fairs pretty well | .
in CPU performance i,
e -server option of JVM S

provides significant

Median Runtime Across Trials

M csoar

jsoar (-server)

M jsoar (-client)

toh count arithmetic

Test

speedup

e Significant startup cost | =z
seen in "max" graph i

Maximum Runtime Across Trials

i M csoar
- jsoar (-server)
N M jsoar (-client)
toh count arithmetic
Test

See http://code.google.com/p/jsoar/wiki/PerformanceTestNotes20090621

Performance

* JVM optimizes at run-time

14

12

10

Seconds

(=]) = o e

CPU Time Over 15 Trials (count-test)

3 4 5 6 7 8 9 10 11 12 13 14 15

Trial

e JSoar gets faster the longer it runs

Future Plans h @

Port Episodic and Semantic Memories
Finish SML Port (volunteers?)
Investigate memory usage issues

Build a cool demo with a cluster of agents
handling requests behind a JRuby on Rails web
app (or something)

Nuggets - j@

Performs better than expected

t works!

Jon Voigt: "Develop and debug in JSoar,
oackport to CSoar”

n use on at least one SoarTech project
Symbol reference counts are gone

Coal h @

e Large memory footprint
e Lack of SML support means rewriting interface
code

 Symbol reference counts are gone, but counts
remain on other structures

JSoar Debugger Demo ™ j@

Conclusion - @

Please give it a try!
Home: http://jsoar.ecooglecode.com

Applet: http://darevay.com/jsoar

Blog: http://blog.darevay.com/category/soar/

Thanks
— to SoarTech for supporting this talk

— to Bob Marinier for early, painful debugging and
performance testing

— to Jon Voigt for ongoing bug fixes

OVERFLOW

What's new

e Quick Memory
e Simple, thread-safe input generation
* Programmatic, or command-line

> gset bl ock(red).x-location 1 Ato.input-Ilink

> gset bl ock(red).y-location O bl ock

> gset bl ock(red).color red Ax-l ocation 2
> gset bl ock(blue).x-location 2 Ay-location 1
> qgset bl ock(blue).y-location O Acol or red

> gset bl ock(blue).color blue bl ock

C Ax-location 2
> gset bl ock(red).x-location 2 Ay-location O
> gset bl ock(red).y-location 1 Acol or bl ue

e See org.jsoar.kernel.io.quick

What's new? “J

e Convert any working memory to Java beans

Aout put -1 1 nk
Anmove- al ong-rout e
Arout e- nane | al phal
Ndesi red- speed 100.0
Naltitude 35.0

e See org.jsoar.kernel.io.beans

cl ass MoveAl ongRout e {

}

public String routeNane;
public double altitude;
private doubl e speed;

publ i ¢ doubl e get Desi redSpeed() {
return speed;

}

public void setDesiredSpeed(double s){
speed = s;

}

