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The Diversity Dilemma

� Should an architecture’s mechanisms be uniform or 
diverse?

� Uniformity: Minimal mechanisms combining in general 
ways
� Appeals to simplicity and elegance
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� The “physicist’s approach”
� The Challenge:  Achieving full range of required 

functionality/coverage

� Diversity: Large variety of specialized mechanisms
� Appeals to functionality and optimization
� The “biologist’s approach”
� The Challenge: Achieving integrability, extensibility and 

maintainability

� Want best of both worlds, but a choice seems inevitable
� Functionality tends to win, leading to the predominance of 

2



Example: Soar

� Through version 8 was a uniform architecture
� Version 9 has become highly diverse

Soar 3-8

Soar 9
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Proposal for Resolving the Dilemma

� Dig beneath architecture for uniformity at implementation 
level that supports diversity/functionality in architecture 
(and above)
� Implementation level is normally just Lisp, C, Java, etc.

� Impacts efficiency and robustness but usually not part of theory 
unless based on neural networks

6/26/09Paul S. Rosenbloom4

unless based on neural networks

� Base implementation level on graphical models for a 
uniform approach to symbol, probability and signal 
processing
� Related to neural networks but broader

� Reconceive architectures via new implementation level
� Reimplement, enhance and hybridize existing architectures
� Develop new architectures
� Improve elegance, functionality, extensibility, integrability and 

maintainability



Graphical Models

� Efficient computation with multivariate functions
� By decomposition over partial independencies
� For constraints, probabilities, speech, etc. 

� Come in a variety of related flavors
� Bayesian networks: Directed, variable nodes

� E.g, p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x) w
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� E.g, p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x)

� Markov networks: Und., variable nodes & clique 
potentials
� Basis for Markov logic and Alchemy

� Factor graphs: Und., variable & factor nodes
� E.g., f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)

� Compute marginals via variants of
� Sum-product (message passing)
� Monte Carlo (sampling)
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Potential for the Implementation Level

� State-of-the-art algorithms for symbol, probability and 
signal processing all derivable from the sum-product 
algorithm
� Belief propagation in Bayesian networks
� Forward-backward in hidden Markov models
� Kalman filters, Viterbi algorithm, FFT, turbo decoding
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� Arc-consistency in constraint diagrams
� Potential to go beyond existing architectures to yield 

an effective and uniform basis for:
� Fusing symbolic and probabilistic reasoning (mixed)
� Unifying cognition with perception and motor control 

(hybrid)
� Bridging from symbolic to neural processing

� Raises hope of a uniform implementation level that 
integrates broad functionality at the architecture level



Scope of Sum-Product Algorithm
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� Mixed models combine Boolean and numeric ranges

� Hybrid models combine discrete and continuous domains

� Hybrid mixed models combine all possibilities

� Dynamic hybrid mixed models add a temporal dimension
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Research Strategy

� Goals
� Evaluate extent to which graphical models can provide a 

uniform implementation layer for existing architectures
� Develop novel, more functional architectures

� Enhancing and/or hybridizing existing architectures
� Starting from scratch leveraging strengths of graphical models
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� Initial approach
� Reimplement and enhance the Soar architecture

� One of the longest standing and most broadly applied 
architectures

� Exists in both uniform (Soar ≤8) and diverse (Soar 9) forms

� Start from the bottom up, implementing uniform version 
while looking for opportunities to more uniformly 
incorporate Soar 9’s diversity plus critical capabilities 
beyond all versions of Soar



Progress to Date

� Elaboration cycle implementation via factor graphs
� Production match
� Production firing

� Decision cycle implementation via Alchemy (Markov logic)
� Elaboration phase
� Decision procedure
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� Decision procedure
� With both also went beyond existing capability

� Lower complexity bound for production match
� Most recently, also began extension of WM beyond symbols

� Mixed elaboration phase with simple semantic memory and 
trellises

� Still preliminary, partial implementations
� Sufficient to demonstrate initial feasibility
� Insufficient for full evaluation of impact on uniformity and 

functionality1 2 3 4



Simple Mapping of Production Match 

onto Factor Graphs

P1: Inherit Color
C1: (<v0> ^type <v1>)
C2: (<v1> ^color <v2>)
-->
A1: (<v0> ^color <v2>)

WM is 3D Boolean array (obj x att x
val)

1 when triple in WM
0 otherwise

Messages are Boolean vectors
1 when variable value possible
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Model as a Boolean function:
P1(v0,v1,v2) = 
C1(v0,v1)C2(v1,v2)A1(v0,v2)

C1

A1

C2

V0

V1

V2

WM

WM

WM is embedded in factors

Confuses binding combinations

1 when variable value possible
0 when variable value ruled out

May not check if rule completely 
matches

Constant tests hidden in factors

typ
e

color

color



Factor Graph Results

� Four issues have been resolved, yielding a new match 
algorithm
� Tracks variable binding combinations only as needed
� Complexity bound is exponential in treewidth rather than 

conditions
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� Avoids some duplicate instantiations on a cycle
� Combines discrimination (α) and join (β) activities in uniform 

graph

� Solutions to binding confusion and rule matching 
increase number of rule variables processed at variable 
nodes
� Yields exponential growth in message size and processing cost
� Need to leverage tendency towards uniform values in WM and 

messages to reduce space and time costs
WM is nearly all 0 while messages are nearly all 1 or 0



Hierarchical Memories and Messages

� N dimensional variant of quad/octrees
(exptrees)
� If entire space has one value, assign it to

region
� Otherwise, partition space into 2N regions at 

next level, and recur

� WM & messages are piecewise constant
functions
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functions
� Recently extended to piecewise linear

functions
� E.g., in 3D: f(<x,y,z>, r) = Ar + Br,1x + Br,2y + Br,3z
� Natural compact representation for

probabilities, signals, images, etc.
� Also handles symbols by setting the Bs to 0

� Implemented mem. but not yet all of sum-
product
� Product implemented with reapproximation

� Could also consider more adaptive 
Core of a spatial reasoning component?Support  episodic memory with time dimension?



Example Match Times

P1: Inherit Color
C1: (<v0> ^type <v1>)
C2: (<v1> ^color <v2>)
-->
A1: (<v0> ^color <v2>)

With solutions to all four 
problems, rule graph comprises 
8 factor nodes and 8 variable 
nodes.

WM is 163 in size, with 4 wmes
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Exceeded heap 
space

1.7 sec.

132 sec. .25 sec.

WM is 16 in size, with 4 wmes
Redistribute P over SSum of Products

Arrays

Hierarchies

~7

~500
Unoptimized Lisp



Implementing Soar’s Elaboration Phase

via Alchemy (Markov logic)

� Markov logic = First order logic + Markov networks
� Compiles weighted FOL into a ground Markov logic 

network
� Node for each ground predicate

� Weight for each ground clause (clique potentials)
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Weight for each ground clause (clique potentials)
� Along with links among all nodes in ground clause

� Goals for implementation
� Explore a mixed elaboration phase (rules & probabilities)
� Explore semantic (fact) memory and trellises
� Enable bidirectional message flow across rules

� Normal elaboration cycle only propagates information forward

� But need bidirectional settling for correct probabilities and 
trellises
Analogous to compilation of RL rules?



Encoding

� Convert productions into logical implications
� Define types for objects and values of triples

� colors={Red, Blue, Green} and objects = {A, B, C, D, E, F}
� Define predicates for attributes

� Color(objects, colors) and Type(objects, objects)
� Specify implications/clauses for rules

� (Type(v0, v1) ^ Color(v1, v2)) => Color(v0, v2).

P1: Inherit Color
C1: (<v0> ^type 

<v1>)
C2: (<v1> ^color 
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� (Type(v0, v1) ^ Color(v1, v2)) => Color(v0, v2).
� Add weights to clauses as appropriate

� Initialize evidence (db file) with WM
� Color(C, Red), Color(D, Blue), Type(A, C), Type(B, D)

� Semantic memory: weighted ground predicates: 10 Color(F, 
Green)

� Trellis: define via a pair of implications (accept & reject 
prefs.)
� Size(step, size) => Size(step+1, size*2).
� (Size(step, size1) ^ size1!=size2) => !Size(step, size2).

C2: (<v1> ^color 
<v2>)

-->
A1: (<v0> ^color 

<v2>)



Alchemy Results

� Mapping basically works (modulo trellis strangeness)
� Mixed representation with simple semantic memory and trellises

� Match occurs via graph compilation not message 
propagation
� As Alchemy compiles first-order clauses to ground network

� All symbolic reasoning in compilation and probabilistic in propagation?
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� All symbolic reasoning in compilation and probabilistic in propagation?

� Falls short of uniform processing in the graph itself

� Implies a three phase decision cycle
1. Compile/match to generate a ground/instantiated network
2. Perform probabilistic inference in the ground network
3. Decide

� Exptrees yield variants of Alchemy’s laziness and lifting 
� Deal with default values and groups of elements processed in 

same way



Locality Implications

� Alchemy, and systems like it, get stuck in local minima
� Generally considered a problem, but is it really?

� If Alchemy maps onto Soar’s decision cycle then it 
only needs to perform K-Search
� Conceptualize K-Search functionally as yielding local 
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� Conceptualize K-Search functionally as yielding local 
minima?

� If so, then finding global minima, in general, requires PS-
Search

� Implication would be that Alchemy should just yield 
local minima, but it also needs PS-Search on top of it
� The same might then be said for all one-level, logical and/or 

probabilistic inference systems



Locality Implications (cont.)

� Taking this a step further, we can hypothesize functionally 
that:
� Elaboration Cycle (10 ms): Local propagation of information
� Decision Cycle (100 ms): Global propagation but only local 

minima
� Problem Space Search (≥ 1 sec): Global minima (via sequence 

of local minima)
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of local minima)

� But this implies that the elaboration cycle can’t do global 
propagation of information
� Explicit global: Creating unique identifiers
� Implicit global: Non-monotonic (negated conditions, operator 

applications)
� Accessing all of working memory?

� Could Soar function if global propagation were limited to 
the decision cycle?
� I may need to answer this for a graphical implementation of 

Soar



Minerals

� New approach to cognitive 
architecture
� Via a uniform graphical 

implementation level
� Uncertain symbolic processing
� Signal processing in inner loop
� Potential bridge to neural

� Far from complete 
architecture
� Combine two experiments
� Add decisions, impasses, 

chunking
� Incorporate Soar 9 extensions

� Locality may be Achilles heel

GoldGoldGoldGold CoalCoalCoalCoal
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� Potential bridge to neural
� May resolve diversity dilemma

� Improving elegance, scope, 
integrability and maintainability

� Early results on elaboration 
cycle/phase are encouraging
� New match algorithm with 

improved complexity bound
� Mixed elaboration phase with 

semantic memory and trellises

� Locality may be Achilles heel
� Or mapping from mechanism 

to implementation may be so 
complex as to lose benefits of 
uniformity in implementation

� May be too slow for actual 
use

� A common implementation 
level need not guarantee 
clean integrability

� Need to show not just more 
elegance, but increased 
utility


