Graphical Models for Cognitive Architecture
Resolving the Diversity Dilemma

Paul S. Rosenbloom

Department of Computer Science & Institute for Creative Technologies
University of Southern California

June 26, 2009

The Diversity Dilemma

» Should an architecture’s mechanisms be uniform or
diverse?

» Uniformity: Minimal mechanisms combining in general
ways

Appeals to simplicity and elegance
The “physicist’s approach”
The Challenge: Achieving full range of required
functionality/coverage

» Diversity: Large variety of specialized mechanisms
Appeals to functionality and optimization
The “biologist’s approach”
The Challenge: Achieving integrability, extensibility and
maintainability

3 Want best of both worlds, but a choice seems inevitable
Paul S. Rosenbloom 6/26/09

Functionality tends to win, leading to the predominance of

Example: Soar

» Through version 8 was a uniform architecture
» Version 9 has become highly diverse

E

Procedural
==]

|

==
A]

Symbolic Long-Term Memory

Symbolic Long-Term Memories

{ Symbolic Short-Term Memory
dﬂ

[]

2UTIPa001

LIS I23(]

[

Perception

Body

w

Soar 3-8

Procedural Semantic Episodic
[Je———=]
He=
[- 3 A
Reinforcement Chlmkmgl Semantic Episedic
Learning Learning Learning
4 [r ¥ 1 3 1
T = Symbolic Short-Term Memory 5o
@ = 3
3 -
Z4 £ S
[LT Visual Memory]
! v
Perception [ST Visual Imagery]-q—pl Action

&

Body

Soar 9

Paul S. Rosenbloom 6/26/09

Proposal for Resolving the Dilemma

» Dig beneath architecture for uniformity at implementation
level that supports diversity/functionality in architecture
(and above)

Implementation level is normally just Lisp, C, Java, etc.

Impacts efficiency and robustness but usually not part of theory
unless based on neural networks

» Base implementation level on graphical models for a
uniform approach to symbol, probability and signal
processing

Related to neural networks but broader

» Reconceive architectures via new implementation level
Reimplement, enhance and hybridize existing architectures

Develop new architectures
: .. Paul S. RoseBbloom . 6/26/09 = ...
Improve elegance, functionality, extensibility, integrability and

Graphical Models

» Efficient computation with multivariate functions
By decomposition over partial independencies
For constraints, probabilities, speech, etc.

» Come In a variety of related flavors u y y
Bayesian networks: Directed, variable nodes
E.g, p(u,w.x,y,z) = p(u)p(w)p(x|u,w)p(y[x)p(z|x) .
Markov networks: Und., variable nodes & clique
potentials

Basis for Markov logic and Alchemy
Factor graphs: Und., variable & factpr nodes
E.g., f(u,w,Xx,y,z) = f (u,w,x)f,(X,y,z)f5(z)
» Compute marginals via varian% of o z .
. N\ N\
Sum-product (message passing) f, f,
s Monte Carlo (sampling) Paul S. Rosenbloom 6/26/09

—h
w

Potential for the Implementation Level

4

State-of-the-art algorithms for symbol, probability and
signal processing all derivable from the sum-product
algorithm

Belief propagation in Bayesian networks

Forward-backward in hidden Markov models

Kalman filters, Viterbi algorithm, FFT, turbo decoding

Arc-consistency in constraint diagrams

Potential to go beyond existing architectures to yield
an effective and uniform basis for:
Fusing symbolic and probabilistic reasoning (mixed)
Unifying cognition with perception and motor control
(hybrid)
Bridging from symbolic to neural processing
Raises hope of a uniform implementation level that

Integrates broad functionality at the architecture level
Paul S. Rosenbloom 6/26/09

Scope of Sum-Product Algorithm

cC» Message/Variable Domain
s Discrete Continuous
Q

@

= Boolean Symbols

2

S .

g | Probability P?cl)%g?aliliy
@ Numeric istributi

g (Distribution) (Density)

Mixed models combine Boolean and numeric ranges
Hybrid models combine discrete and continuous domains
Hybrid mixed models combine all possibilities

Dynamic hybrid mixed models add a temporal dimension
7 Paul S. Rosenbloom 6/26/09

Research Strategy

» Goals

Evaluate extent to which graphical models can provide a
uniform implementation layer for existing architectures
Develop novel, more functional architectures

Enhancing and/or hybridizing existing architectures

Starting from scratch leveraging strengths of graphical models

» Initial approach

Reimplement and enhance the Soar architecture

One of the longest standing and most broadly applied
architectures

Exists in both uniform (Soar <8) and diverse (Soar 9) forms

Start from the bottom up, implementing uniform version
while looking for opportunities to more uniformly
Incorporate Soar 9’'s diversity plus critical capabilities

beyond all versions of Soar
8 Paul S. Rosenbloom 6/26/09

Progress to Date

» Elaboration cycle implementation via factor graphs
Production match
Production firing

» Decision cycle implementation via Alchemy (Markov logic)
Elaboration phase
Decision procedure

» With both also went beyond existing capability

Lower complexity bound for production match
Most recently, also began extension of WM beyond symbols

Mixed elaboration phase with simple semantic memory and
trellises

» Still preliminary, partial implementations
Sufficient to demonstrate initial feasibility

Insufficient for full evaluation of impact on uniformity and
f

Paul S. Rosenbloom 6/26/09

Simple Mapping of Production Match
onto Factor Graphs

P1: Inherit Color WM is 3D Boolean array (obj x att x
C1: (<v0> Mype <v1>) val) _ _
C2: (<v1> "color <v2>) 1 when triple in WM
> O otherwise

Al: (<v0> ~color <v2>) Messages are_BooIean vectors
1 when variable value possible

Model as a Boolean function: .
0 when variable value ruled out

P1(Vo,V1,Vy) =
C1(Vo,V)Co(V1, Vo)A (Vo,V

Constant tests hidden in factors

May not check if rule completely
rpg‘Jl-lcng§senbloom 6/26/09

10

Factor Graph Results

» Four issues have been resolved, yielding a new match
algorithm
Tracks variable binding combinations only as needed

Complexity bound is exponential in treewidth rather than
conditions

Avoids some duplicate instantiations on a cycle
Combines discrimination (a) and join () activities in uniform
graph
» Solutions to binding confusion and rule matching
Increase number of rule variables processed at variable
nodes
Yields exponential growth in message size and processing cost

Need to leverage tendency towards uniform values in WM and
1 messages to reduce space an@4im&agem 6/26/09

Hierarchical Memories and Messages

» N dimensional variant of quad/octrees

(exptrees) 0 0
If entire space has one value, assign it to 0
region

Otherwise, partition space into 2N regions at
next level, and recur

» WM & messages are piecewise constant

functions
» Recently extended to piecewise linear

functions
E.g., in 3D: f(<x,y,z>, 1) =A, + B, ;X + B,y + B,3Z

Natural compact representation for
probabilities, signals, images, etc.

Also handles symbols by setting the Bs to 0

Implemented mem. but not yet all of sum-
product

12 6o R5RRE BURIEBRRIRA M RARRFIMaHRRoom 6/200s

r\f\l IIIJ ﬂlf\ﬂ I'\I\IF\IN:AI'\IF |22 Wa Nl laN AAI\V\"‘:\I"\

Example Match Times

P1: Inherit Color With solutions to all four
C1: (<v0> ~ype <v1>) problems, rule graph comprises
C2: (<v1> ~color <v2>) 8 factor nodes and 8 variable
> nodes.

Al: (<v0> ~color <v2>)

WM is 16° in size, with 4 wmes
Sum of Products Redistribute P over S

Arrays Exceeded heap 17 sec.
space
~7
Hierarchies 132 sec. .25 Sec.

Unoptimized Lisp

~500

13 Paul S. Rosenbloom 6/26/09

Implementing Soar’s Elaboration Phase
via Alchemy (Markov logic)

» Markov logic = First order logic + Markov networks
Compiles weighted FOL into a ground Markov logic
network

Node for each ground predicate

Weight for each ground clause (clique potentials)
Along with links among all nodes in ground clause

» Goals for implementation
Explore a mixed elaboration phase (rules & probabilities)
Explore semantic (fact) memory and trellises
Enable bidirectional message flow across rules

Normal elaboration cycle only propagates information forward

But need bidirectional settling for correct probabilities and

trellises
14 Analogous to compilation of RL rule§3u! S- Rosenbloom ~ 6/26/09

Encoding

» Convert productions into logical implications

Define types for objects and values of triples
colors={Red, Blue, Green} and objects = {A, B, C, D, E, F}

Define predicates for attributes P1: Inherit Color
Color(objects, colors) and Type(objects, objects) C1: (<v0> ~ype
Specify implications/clauses for rules <v1l>)

(Type(vO, v1) * Color(vl, v2)) => Color(v0, v2). 2 (<v1> ~color
Add weights to clauses as appropriate <v2>)
» Initialize evidence (db file) with WM -->
Color(C, Red), Color(D, Blue), Type(A, C), Type&{B, (&Yy0> ~color
» Semantic memory: weighted ground pre<d*|%>e?tes: 10 Color(F,
Green)
» Trellis: define via a pair of implications (accept & reject
prefs.)
Size(step, size) => Size(step+1, size*2).
ASize(step, sizel) * sizell=size2),=>I3ize(step, size2).

Alchemy Results

» Mapping basically works (modulo trellis strangeness)
Mixed representation with simple semantic memory and trellises
» Match occurs via graph compilation not message
propagation
As Alchemy compiles first-order clauses to ground network
All symbolic reasoning in compilation and probabilistic in propagation?
Falls short of uniform processing in the graph itself

» Implies a three phase decision cycle
Compile/match to generate a ground/instantiated network
Perform probabilistic inference in the ground network
Decide

» Exptrees yield variants of Alchemy’s laziness and lifting

Deal with default values and groups of elements processed in
l16same way Paul S. Rosenbloom 6/26/09

Locality Implications

» Alchemy, and systems like it, get stuck in local minima
Generally considered a problem, but is it really?

» If Alchemy maps onto Soar’s decision cycle then it
only needs to perform K-Search
Conceptualize K-Search functionally as yielding local
minima?
If so, then finding global minima, in general, requires PS-
Search
» Implication would be that Alchemy should just yield
local minima, but it also needs PS-Search on top of it

The same might then be said for all one-level, logical and/or

probabilistic inference systems
17 Paul S. Rosenbloom 6/26/09

Locality Implications (cont.)

» Taking this a step further, we can hypothesize functionally
that:
Elaboration Cycle (10 ms): Local propagation of information
Decision Cycle (100 ms): Global propagation but only local
minima
Problem Space Search (= 1 sec): Global minima (via sequence
of local minima)
» But this implies that the elaboration cycle can’t do global
propagation of information
Explicit global: Creating unique identifiers

Implicit global: Non-monotonic (negated conditions, operator
applications)

Accessing all of working memory?

» Could Soar function if global propagation were limited to
the decision cycle?

18 | may need to answer this for dgt&ptficeab atpl&dt&htation of

CAAar

Minerals

» New approach to cognitive

Far from complete
architecture

architecture
Via a uniform graphical Combine two experiments
Implementation level

Add decisions, impasses,
Uncertain symbolic processing '

chunking
Signal processing in inner loop Incorporate Soar 9 extensions
Potential bridge to neural Locality may be Achilles heel
May resolve diversity dilemma Or mapping from mechanism
Improving elegance, scope, to implementation may be so
integrability and maintainability complex as to lose benefits of
» Early results on elaboration uniformity in implementation
cycle/phase are encouraging

May be too slow for actual
New match algorithm with use
improved complexity bound A common implementation
Mixed elaboration phase with
semantic memory and trellises level n_eed not guarantee
clean integrability

Pa“b?éﬁéfﬁ?%’mbﬁ’lz?ﬁ&reased

¥

19

