
Graphical Models for Cognitive Architecture
Resolving the Diversity Dilemma

Paul S. Rosenbloom

Department of Computer Science & Institute for Creative Technologies

University of Southern California

June 26, 2009

The Diversity Dilemma

� Should an architecture’s mechanisms be uniform or
diverse?

� Uniformity: Minimal mechanisms combining in general
ways
� Appeals to simplicity and elegance

6/26/09Paul S. Rosenbloom

� The “physicist’s approach”
� The Challenge: Achieving full range of required

functionality/coverage

� Diversity: Large variety of specialized mechanisms
� Appeals to functionality and optimization
� The “biologist’s approach”
� The Challenge: Achieving integrability, extensibility and

maintainability

� Want best of both worlds, but a choice seems inevitable
� Functionality tends to win, leading to the predominance of

2

Example: Soar

� Through version 8 was a uniform architecture
� Version 9 has become highly diverse

Soar 3-8

Soar 9

6/26/09Paul S. Rosenbloom3

Proposal for Resolving the Dilemma

� Dig beneath architecture for uniformity at implementation
level that supports diversity/functionality in architecture
(and above)
� Implementation level is normally just Lisp, C, Java, etc.

� Impacts efficiency and robustness but usually not part of theory
unless based on neural networks

6/26/09Paul S. Rosenbloom4

unless based on neural networks

� Base implementation level on graphical models for a
uniform approach to symbol, probability and signal
processing
� Related to neural networks but broader

� Reconceive architectures via new implementation level
� Reimplement, enhance and hybridize existing architectures
� Develop new architectures
� Improve elegance, functionality, extensibility, integrability and

maintainability

Graphical Models

� Efficient computation with multivariate functions
� By decomposition over partial independencies
� For constraints, probabilities, speech, etc.

� Come in a variety of related flavors
� Bayesian networks: Directed, variable nodes

� E.g, p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x) w

y
x

z

u

6/26/09Paul S. Rosenbloom5

� E.g, p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x)

� Markov networks: Und., variable nodes & clique
potentials
� Basis for Markov logic and Alchemy

� Factor graphs: Und., variable & factor nodes
� E.g., f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)

� Compute marginals via variants of
� Sum-product (message passing)
� Monte Carlo (sampling)

w z

f1

w

f3f2

y

x zu

Potential for the Implementation Level

� State-of-the-art algorithms for symbol, probability and
signal processing all derivable from the sum-product
algorithm
� Belief propagation in Bayesian networks
� Forward-backward in hidden Markov models
� Kalman filters, Viterbi algorithm, FFT, turbo decoding

6/26/09Paul S. Rosenbloom6

� Arc-consistency in constraint diagrams
� Potential to go beyond existing architectures to yield

an effective and uniform basis for:
� Fusing symbolic and probabilistic reasoning (mixed)
� Unifying cognition with perception and motor control

(hybrid)
� Bridging from symbolic to neural processing

� Raises hope of a uniform implementation level that
integrates broad functionality at the architecture level

Scope of Sum-Product Algorithm

Symbols

Discrete
Message/Variable Domain

M
es

sa
ge

/V
ar

ia
bl

e
R

an
ge

Boolean

Continuous

6/26/09Paul S. Rosenbloom7

� Mixed models combine Boolean and numeric ranges

� Hybrid models combine discrete and continuous domains

� Hybrid mixed models combine all possibilities

� Dynamic hybrid mixed models add a temporal dimension

Probability
(Distribution)

Signal &
Probability
(Density)M

es
sa

ge
/V

ar
ia

bl
e

R
an

ge

Numeric

Research Strategy

� Goals
� Evaluate extent to which graphical models can provide a

uniform implementation layer for existing architectures
� Develop novel, more functional architectures

� Enhancing and/or hybridizing existing architectures
� Starting from scratch leveraging strengths of graphical models

6/26/09Paul S. Rosenbloom8

� Initial approach
� Reimplement and enhance the Soar architecture

� One of the longest standing and most broadly applied
architectures

� Exists in both uniform (Soar ≤8) and diverse (Soar 9) forms

� Start from the bottom up, implementing uniform version
while looking for opportunities to more uniformly
incorporate Soar 9’s diversity plus critical capabilities
beyond all versions of Soar

Progress to Date

� Elaboration cycle implementation via factor graphs
� Production match
� Production firing

� Decision cycle implementation via Alchemy (Markov logic)
� Elaboration phase
� Decision procedure

6/26/09Paul S. Rosenbloom9

� Decision procedure
� With both also went beyond existing capability

� Lower complexity bound for production match
� Most recently, also began extension of WM beyond symbols

� Mixed elaboration phase with simple semantic memory and
trellises

� Still preliminary, partial implementations
� Sufficient to demonstrate initial feasibility
� Insufficient for full evaluation of impact on uniformity and

functionality1 2 3 4

Simple Mapping of Production Match

onto Factor Graphs

P1: Inherit Color
C1: (<v0> ^type <v1>)
C2: (<v1> ^color <v2>)
-->
A1: (<v0> ^color <v2>)

WM is 3D Boolean array (obj x att x
val)

1 when triple in WM
0 otherwise

Messages are Boolean vectors
1 when variable value possible

6/26/09Paul S. Rosenbloom10

Model as a Boolean function:
P1(v0,v1,v2) =
C1(v0,v1)C2(v1,v2)A1(v0,v2)

C1

A1

C2

V0

V1

V2

WM

WM

WM is embedded in factors

Confuses binding combinations

1 when variable value possible
0 when variable value ruled out

May not check if rule completely
matches

Constant tests hidden in factors

typ
e

color

color

Factor Graph Results

� Four issues have been resolved, yielding a new match
algorithm
� Tracks variable binding combinations only as needed
� Complexity bound is exponential in treewidth rather than

conditions

6/26/09Paul S. Rosenbloom11

� Avoids some duplicate instantiations on a cycle
� Combines discrimination (α) and join (β) activities in uniform

graph

� Solutions to binding confusion and rule matching
increase number of rule variables processed at variable
nodes
� Yields exponential growth in message size and processing cost
� Need to leverage tendency towards uniform values in WM and

messages to reduce space and time costs
WM is nearly all 0 while messages are nearly all 1 or 0

Hierarchical Memories and Messages

� N dimensional variant of quad/octrees
(exptrees)
� If entire space has one value, assign it to

region
� Otherwise, partition space into 2N regions at

next level, and recur

� WM & messages are piecewise constant
functions

0
10

00

1 0

6/26/09Paul S. Rosenbloom12

functions
� Recently extended to piecewise linear

functions
� E.g., in 3D: f(<x,y,z>, r) = Ar + Br,1x + Br,2y + Br,3z
� Natural compact representation for

probabilities, signals, images, etc.
� Also handles symbols by setting the Bs to 0

� Implemented mem. but not yet all of sum-
product
� Product implemented with reapproximation

� Could also consider more adaptive
Core of a spatial reasoning component?Support episodic memory with time dimension?

Example Match Times

P1: Inherit Color
C1: (<v0> ^type <v1>)
C2: (<v1> ^color <v2>)
-->
A1: (<v0> ^color <v2>)

With solutions to all four
problems, rule graph comprises
8 factor nodes and 8 variable
nodes.

WM is 163 in size, with 4 wmes

6/26/09Paul S. Rosenbloom13

Exceeded heap
space

1.7 sec.

132 sec. .25 sec.

WM is 16 in size, with 4 wmes
Redistribute P over SSum of Products

Arrays

Hierarchies

~7

~500
Unoptimized Lisp

Implementing Soar’s Elaboration Phase

via Alchemy (Markov logic)

� Markov logic = First order logic + Markov networks
� Compiles weighted FOL into a ground Markov logic

network
� Node for each ground predicate

� Weight for each ground clause (clique potentials)

6/26/09Paul S. Rosenbloom14

Weight for each ground clause (clique potentials)
� Along with links among all nodes in ground clause

� Goals for implementation
� Explore a mixed elaboration phase (rules & probabilities)
� Explore semantic (fact) memory and trellises
� Enable bidirectional message flow across rules

� Normal elaboration cycle only propagates information forward

� But need bidirectional settling for correct probabilities and
trellises
Analogous to compilation of RL rules?

Encoding

� Convert productions into logical implications
� Define types for objects and values of triples

� colors={Red, Blue, Green} and objects = {A, B, C, D, E, F}
� Define predicates for attributes

� Color(objects, colors) and Type(objects, objects)
� Specify implications/clauses for rules

� (Type(v0, v1) ^ Color(v1, v2)) => Color(v0, v2).

P1: Inherit Color
C1: (<v0> ^type

<v1>)
C2: (<v1> ^color

6/26/09Paul S. Rosenbloom15

� (Type(v0, v1) ^ Color(v1, v2)) => Color(v0, v2).
� Add weights to clauses as appropriate

� Initialize evidence (db file) with WM
� Color(C, Red), Color(D, Blue), Type(A, C), Type(B, D)

� Semantic memory: weighted ground predicates: 10 Color(F,
Green)

� Trellis: define via a pair of implications (accept & reject
prefs.)
� Size(step, size) => Size(step+1, size*2).
� (Size(step, size1) ^ size1!=size2) => !Size(step, size2).

C2: (<v1> ^color
<v2>)

-->
A1: (<v0> ^color

<v2>)

Alchemy Results

� Mapping basically works (modulo trellis strangeness)
� Mixed representation with simple semantic memory and trellises

� Match occurs via graph compilation not message
propagation
� As Alchemy compiles first-order clauses to ground network

� All symbolic reasoning in compilation and probabilistic in propagation?

6/26/09Paul S. Rosenbloom16

� All symbolic reasoning in compilation and probabilistic in propagation?

� Falls short of uniform processing in the graph itself

� Implies a three phase decision cycle
1. Compile/match to generate a ground/instantiated network
2. Perform probabilistic inference in the ground network
3. Decide

� Exptrees yield variants of Alchemy’s laziness and lifting
� Deal with default values and groups of elements processed in

same way

Locality Implications

� Alchemy, and systems like it, get stuck in local minima
� Generally considered a problem, but is it really?

� If Alchemy maps onto Soar’s decision cycle then it
only needs to perform K-Search
� Conceptualize K-Search functionally as yielding local

6/26/09Paul S. Rosenbloom17

� Conceptualize K-Search functionally as yielding local
minima?

� If so, then finding global minima, in general, requires PS-
Search

� Implication would be that Alchemy should just yield
local minima, but it also needs PS-Search on top of it
� The same might then be said for all one-level, logical and/or

probabilistic inference systems

Locality Implications (cont.)

� Taking this a step further, we can hypothesize functionally
that:
� Elaboration Cycle (10 ms): Local propagation of information
� Decision Cycle (100 ms): Global propagation but only local

minima
� Problem Space Search (≥ 1 sec): Global minima (via sequence

of local minima)

6/26/09Paul S. Rosenbloom18

of local minima)

� But this implies that the elaboration cycle can’t do global
propagation of information
� Explicit global: Creating unique identifiers
� Implicit global: Non-monotonic (negated conditions, operator

applications)
� Accessing all of working memory?

� Could Soar function if global propagation were limited to
the decision cycle?
� I may need to answer this for a graphical implementation of

Soar

Minerals

� New approach to cognitive
architecture
� Via a uniform graphical

implementation level
� Uncertain symbolic processing
� Signal processing in inner loop
� Potential bridge to neural

� Far from complete
architecture
� Combine two experiments
� Add decisions, impasses,

chunking
� Incorporate Soar 9 extensions

� Locality may be Achilles heel

GoldGoldGoldGold CoalCoalCoalCoal

6/26/09Paul S. Rosenbloom19

� Potential bridge to neural
� May resolve diversity dilemma

� Improving elegance, scope,
integrability and maintainability

� Early results on elaboration
cycle/phase are encouraging
� New match algorithm with

improved complexity bound
� Mixed elaboration phase with

semantic memory and trellises

� Locality may be Achilles heel
� Or mapping from mechanism

to implementation may be so
complex as to lose benefits of
uniformity in implementation

� May be too slow for actual
use

� A common implementation
level need not guarantee
clean integrability

� Need to show not just more
elegance, but increased
utility

