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What is semantic knowledge

• General knowledge independent of specific context
– Contrast to episodic memory, which is tied to specific 

context/experience

– Support sub-symbolic learning: learn consistent prototypes from 
variations of specific instances

• Semantic knowledge includes many kinds of general knowledge
– Concepts about concrete things– Concepts about concrete things

• Food, tools, materials …

– Concepts about abstract things
• Relation, emotion …

– Events, facts and information

– …

• The type of semantic knowledge in this research
– Functional category knowledge of concrete objects

– Stored in Concept Semantic Memory
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Functional Category Knowledge of 

Concrete Objects
• Functional category knowledge is one specific form of fundamental 

semantic knowledge
– Based on simplest scenario where a single agent interacts with the 

environment

– Functional properties: related to direct physical interactions of an 
embodied agent

– Objects within the same functional category shares more functional – Objects within the same functional category shares more functional 
properties than objects belong to different functional categories

• Generalization
– although interactions with the world takes place at the level of 

individual objects, much reasoning takes part at the level of categories 
(Russell & Norvig, AIMA)

• Learning approach
– Knowledge engineering is implausible for more challenging domains
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Motivational Category Learning 

Example – Hunting
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Hunt or not?

How to hunt?



Motivational Category Learning 

Example – Hunting

good preys

aggressive preys

Animals functionally 
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Requirements of 

Semantic Category Learning

• Incremental learning, noise tolerance (sub-symbolic)

• Integration with diverse knowledge sources
– Episodic learning

– Reinforcement learning

• Functionally meaningful (semantics)• Functionally meaningful (semantics)
– Categorization must be based on functional properties 

(related to direct physical interactions)

– Same object may be used for different purposes, therefore 
need multiple ways of categorization

• Example: 
– Categorize swordfish as food

– Categorize swordfish as weapon
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Architectural Design
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Functional Category 
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Functional Features and Predictive 

Features

Functional Features Predictive Features

Properties directly related to actions Indirectly related to functional properties

Example: shape and surface texture of an 

object to be gripped by a robotic arm agent

Example: Color of the object to be gripped
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More “expensive” to observe: require 

interaction

“Cheaper” to observe: ranged sensors

Prior knowledge: define categorization 

criteria

Learning: select relevant features and 

ignore irrelevant features in order to predict 

functional features more accurately



Interface of Concept Semantic 

Memory to the Architecture

• Train the system with an object for a specific 
categorization criteria

– Example: 

• Categorize swordfish (object) as food (criteria)

Categorize swordfish (object) as weapon (criteria)• Categorize swordfish (object) as weapon (criteria)

• Retrieve the symbolic category given 
predictive features

• Retrieve the functional features given 
predictive features
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Hierarchical Clustering Algorithm

• Adapted from COBWEB (D. Fisher, 1987)

• Incremental learning

• Create hierarchical category structure

• Can deal with several representation forms• Can deal with several representation forms

– Nominal features

– Numeric features

– Relational structural features

• Robust (noise tolerant)
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Category Recognition Model

• Right now we use Naïve Bayesian Classifier
– Incremental learning

– A set of “basic level categories” (classes)

– Complete independency among features give class label

– Handles numeric features

• Can use more sophisticated models
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Evaluations with Functional Integration 

Models

• Evaluation Task

– Hunting task

• Functional Integration Models

– Integration with Episodic memory– Integration with Episodic memory

• Not tested with real Soar Episodic Memory yet

• Real integration will involve subtle technical issues

– Integration with Reinforcement learning

• Tested with real Soar-RL
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The Hunting Task

• There are two functional types of objects in the 
world, both have diverse sub-types (requires 
category learning)

– Animals

– Weapons– Weapons

• There are complex interactions between the two 
functional types of objects

– Certain animal is only huntable with certain weapons

– Goal is to learn to make the correct decision based on 
experience
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Weapon features (both functional and predictive)

The Hunting Domain Data

Numeric feature: lower_bound ~ upper_bound

Symbolic feature: value_1/…/value_n

Both use uniform distribution
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Both use uniform distribution

Created based on our personal knowledge, Google image, Wikipedia …



Animal functional features 

“Expensive” to observe

Small variance

The Hunting Domain Data

Animal predictive features 

“Cheap” to observe

Large variance
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Outcomes of interactions (hunting animal with weapon) 

success – 1,  failure – 0

Completely deterministic – for simplicity

The Hunting Domain Data
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Soar Episodic Memory Approach

• Training

– The agent is presented with specific animal and 
weapon

– Perform an action (hunt) and observes the result

– Record the experience in episodic memory– Record the experience in episodic memory

• Testing

– Given a specific weapon and animal, retrieve the “best 
match” episode

– Use the retrieved episode to predict the potential 
result and make the decision
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Condition 2

Soar Episodic memory only using predictive features
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Condition 3

Soar Episodic memory using both functional and predictive features
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Conclusions from the plot

• Specific functional features are more reliable 

than general perceptual features

• Instance based learning is faster in the 

beginning, because probabilistic learning must beginning, because probabilistic learning must 

accumulate enough samples

• After sufficient sampling, probabilistic learning 

outperforms, because it assumes a more 

compact model
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Soar-RL Approach

• Training

– The agent is presented with specific animal and 

weapon

– Perform an action (hunt/avoid) and receives a – Perform an action (hunt/avoid) and receives a 

reward

– Update numeric preference based on rewards

• Testing

– Choose the action with the highest numeric 

preference (Q-value)
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Antelope + Club + hunt = Failure
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Rabbit + Sword + hunt = ?
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Conclusions from the plot

• Integration of category learning helps RL with better 
generalization

• RL with hierarchical category representation converges 
slower on the horizon (not shown)
– “Wrong generalization” is always the tradeoff

In the worst case, some specific situations may NEVER be – In the worst case, some specific situations may NEVER be 
learned correctly

• A possible solution is to “switch” to using only most 
specific rules after certain point
– It can be made architectural

– Similar, in spirit, to the idea of decaying learning rate and 
exploration rate in standard RL
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Nuggets and Coal

• Nuggets
– Added Architectural Concept Semantic Memory

• Sub-symbolic probabilistic category learning

– First computational models for functional integration 
of category learning in a general cognitive architectureof category learning in a general cognitive architecture

• Integrated with “Episodic Memory” and improved learning 
performance

• Integrated with Soar-RL and improved learning performance

• Coal
– Need fully integration with real Soar Episodic Memory

– Further improvement on integration with Soar-RL

– Evaluation scenario is still relatively simple
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