
Augmenting Soar with Non-Symbolic Processing

via the IO-Link

29th Soar Workshop Samuel Wintermute

University of Michigan

Soar and SVS

� SVS adds spatial and visual processing to Soar

� This involves new non-symbolic memories

� Memories cannot be “retrieved” into working memory

� Conceptual problem:

2

� How should these memories be integrated with symbolic

working memory?

� Engineering problem:

� What should the actual software look like?

Soar/SVS Architecture

Symbolic Working Memory Visual BufferVisual Buffer

io-link

Perceptual LTMControllers

Environment

Spatial Scene

3

Agent

Goal of Integration
1: O: O1 (initialize-blocks-world-look-ahead)

2: ==>S: S2 (operator tie)

3: O: O8 (evaluate-operator)

4: ==>S: S3 (operator no-change)

5: O: C1 (move-block)

6: ==>S: S4 (operator tie)

7: O: O22 (evaluate-operator)

8: ==>S: S5 (operator no-change)

9: O: C2 (move-block)

10: O: O28 (move-block)

4

10: O: O28 (move-block)

11: O: O19 (move-block)

12: O: O18 (move-block)

13: O: O5 (move-block)

14: ==>S: S6 (operator tie)

15: O: O41 (evaluate-operator)

16: ==>S: S7 (operator no-change)

17: O: C3 (move-block)

18: O: O46 (move-block)

19: O: O38 (move-block)

20: O: O35 (move-block)

blocks-world achieved

Goal of Integration
1: O: O1 (initialize-blocks-world-look-ahead)

2: ==>S: S2 (operator tie)

3: O: O8 (evaluate-operator)

4: ==>S: S3 (operator no-change)

5: O: C1 (move-block)

6: ==>S: S4 (operator tie)

7: O: O22 (evaluate-operator)

8: ==>S: S5 (operator no-change)

9: O: C2 (move-block)

10: O: O28 (move-block)

S1

C B
A

S3

C B
A

S5

B

S3

C B A

S5

C B A

S3

B

5

10: O: O28 (move-block)

11: O: O19 (move-block)

12: O: O18 (move-block) C
B

A

S5

C
B
A

C
B

A

S3

C
B
A

Goal of Integration
1: O: O1 (initialize-blocks-world-look-ahead)

2: ==>S: S2 (operator tie)

3: O: O8 (evaluate-operator)

4: ==>S: S3 (operator no-change)

5: O: C1 (move-block)

6: ==>S: S4 (operator tie)

7: O: O22 (evaluate-operator)

8: ==>S: S5 (operator no-change)

9: O: C2 (move-block)

10: O: O28 (move-block)

S1

C B
A

S1 S7

6

10: O: O28 (move-block)

11: O: O19 (move-block)

12: O: O18 (move-block)

13: O: O5 (move-block)

14: ==>S: S6 (operator tie)

15: O: O41 (evaluate-operator)

16: ==>S: S7 (operator no-change)

17: O: C3 (move-block)

18: O: O46 (move-block)

19: O: O38 (move-block)

20: O: O35 (move-block)

blocks-world achieved

S1

C B A

S7

C
B

A

S7

C
B
A

S1

C
B

A

S1

C
B
A

S7

C B A

Imagery Rules
sp {apply*move-a-to-table

(state <s> ^block-a <a>

^operator.name move-a-to-table)

(<a> ^on <on>)

-->

(<a> ^on <on> -

^on table)

}

7

Imagery Rules
sp {apply*move-a-to-table

(state <s>

^operator.name move-a-to-table)

-->

(<s>

C B
A

C B A

8

� In what scenes should the rule match?

� How should the scene be modified by the rule?

� Define and name these properties

� Create a qualitative symbolic interface

)

}

C B A

Imagery Rules
sp {apply*move-a-to-table

(state <s> ^property <x>

^property <y>

^property <z>

^operator.name move-a-to-table)

-->

(<s> ^property <x> -

<x2>

^property <y> -

C B
A

9

� Imagery objects aren’t in WM, but are tightly related to it

� How can this relationship be implemented?

^property <y> -

<y2>)

}
C B A

Option: Interfacing via Action Operators

Treat imagery as an external environment modified via actions

2: ==>S: S2 (operator tie)

3: O: O8 (evaluate-operator)

4: ==>S: S3 (operator no-change)

O: XX (add-imagery-structure) * N

O: XX (extract-property) * N

5: O: C1 (move-block)

O: XX (remove-imagery-structure)

O: XX (add-imagery-structure)

O: XX (extract-property) * N

O: XX (remove-imagery-structure) * N

6: O: O9 (move-block)

10

� Treat imagery as an external environment modified via actions

� Problems

� Slow

� Requires lots of knowledge

� No truth maintenance
� When are images added and removed?

� When are properties valid?

� Not a tight integration with working memory

Option: Use EpMem/SMem Interface

� Separate interfaces at every state

� Some truth maintenance benefit

� Parallel access, not necessarily operator-based

� Episodes and semantic structures are symbolic

� Storage and retrieval are interesting, actually using the data is just regular Soar
processing

11

� Imagery objects are not symbolic

� “Storage” (WM � imagery) is different

� Imagery structures are temporary, not long-term

� “Retrieval” (imagery � WM) is different

� Imagery objects can not be copied to WM, properties of objects are retrieved instead

� Truth maintenance is a problem

� More dynamic interface is needed

Working Memory Integration

� State-local svs structure connects to imagery system

� Most imagery operations are equivalent to a hidden set of
elaboration productions

svs {create*image

(state <s> ^svs <svs>)

(<svs> ^image <im>)

(<im> ^property foo

svs {evaluate*intersect-query

(state <s> ^svs <svs>)

(<svs> ^intersection <i>)

(<i> ^first-object image22

12

� Imagery structures persist with WM structures, and update when
WM changes

� WM structures queried from imagery persist with query structure,
and update when WM or imagery state changes

(<im> ^property foo

^property bar)

-->

(<svs> ^object-id image22)

}

(<i> ^first-object image22

^second-object image37)

-->

(<i> ^value true)

}

Working Memory Integration

13

SVS Implementation

� All communication happens at top-state over the io-link

� Why?

� Project integration is simple

� Software evolved from originally using an operator-action

interface

It works well

14

� It works well

� Remainder of talk will cover implementation

Commands on SML Side

� Problem: If commands aren’t associated with operators, many can
be present simultaneously

� Solution: Allow this, but carefully consider monotonicity

� Most SVS commands are monotonic

� Can be processed in (pseudo) parallel

� Even “persistent” structures are monotonic: these are like elaborations
of O-supported WM structures

15

Even “persistent” structures are monotonic: these are like elaborations
of O-supported WM structures

� These commands must be reversible, and retractions must be monitored

� Intra-command interactions are still possible
� Current SVS solution is to process commands in one carefully-ordered wave

� Must guarantee working memory is consistent with commands by input phase

� Some commands are non-monotonic

� Actual actions passed to the external world

� Internal commands with global effects

Soar Implementation Basics

� Default productions are defined to

� build svs structures on each state

� copy commands to output-link from svs structures

� associate commands with responses from input-link

� fill in decisions requiring multiple i/o phases

keep output-link consistent with subgoal svs structures

16

� keep output-link consistent with subgoal svs structures

Decision Cycle Integration

� Problem: imagery structures can be i-supported, requiring

multiple waves to make a decision, but i/o happens

between decisions

� Careful ordering on SML side handles some of this

� Some cases require interleaved imagery and rule-

matching, and can’t be done in one decision

17

matching, and can’t be done in one decision

� Partial solution: propose filler operator if any commands are

present without responses

Subgoal Integration

� Problem: o-supported subgoal imagery must be removed

when subgoal goes away

� Problem: i-supported subgoal imagery modifies output-

link, usually creating o-supported results

18

� Solution: default cleanup production

� If a command is ever present on output-link without an

equivalent command on an svs WME (on any state), it is

removed

� Production must be o-supported, but does not need its own

operator

Subgoal Integration: Interaction Between States

� Problem: There is only one instance of each memory in
SVS, but multiple subgoals may be present in Soar

� Solution: monotonic commands prevent most problems

� Commands in substates cannot interfere with results of
commands in superstates if all are monotonic

19

commands in superstates if all are monotonic

� Non-monotonic commands must be issued at top-state

� Superstate processing can still access imagery objects
created in substates

� Could be fixed by notifying SVS of which state commands
belong to

Conclusion

� Nuggets:

� Rich, efficient interaction with non-symbolic memories over

the io-link is possible without Soar kernel modification

� Resulting interface is useful and intuitive

� Task knowledge can be concisely represented

� Coal:

20

� Coal:

� Multiple waves of i/o operation are impossible during the

decision cycle, resulting in extra decisions

� Lack of direct connections to subgoals can cause minor

problems with chunking and GDS

Efficiently Processing Changes on SML Side

� Problem: If commands exists for many cycles and have deep
structure, what if symbolic processing modifies them?

� Solution: Detect changes in SML WME structures

� Every new WME added via SML has a unique timetag, timetags
always increase

21

� If commands are trees, hashing can be done O(# of WMEs)

� Parse through WME tree, find highest timetag

� Simultaneously count how many WMEs are in the tree

� Hash is {WME count , highest timetag}
� Adding a WME will result in a new count and new timetag

� Modifying a WME will result in a new timetag

� Deleting a WME will result in a lower count

� Hash can detect changes quickly, but can’t detect what changed
� Currently no general-purpose solution to this..

Binding Output and Input

� Problem: ^status complete is insufficient feedback for

commands

� Solution: request-ids

� In Soar, use make-constant-symbol to add an id whenever a

command appears

22

command appears

� Externally keep track of id, return result with it on input-link

� In Soar, link the result structure to the command structure

� request-id need not concern agent developers

Binding Input and Output: Example

1: (svs.command <c>

<c> ^parameter one

^parameter two)

4: (svs.command <c>)

(<c> ^request-id <id>)

-->

(output-link ^command (deep-copy<c>))

5: (output-link.command <c-copy>

<c-copy> ^parameter one

2: (svs.command <c>)

-->

(<c> ^request-id (make-constant-symbol))

3: (<c> ^request-id constant23)

23

(output-link ^command (deep-copy<c>))
<c-copy> ^parameter one

^parameter two

^request-id constant23) 6: process command, create response

7: (io.input-link.response <r>

<r> ^request-id constant23

^property a

^property b)

8: (svs.command <c>)

(input-link.response <r>)

(<c> ^request-id <id>)

(<r> ^request-id <id>)

-->

(<c> ^response <r>)
9: (<c> ^response <r>)

Binding Input and Output: Agent Developer View

1: (svs.command <c>

<c> ^parameter one

^parameter two)

2: process command, create response

3: (<c> ^response <r>

24

3: (<c> ^response <r>

<r> ^property a

^property b)

Subgoal Integration: Chunking and GDS

� If an imagery structure is supposed to be a result, it can be created on a
superstate’s svs WME

� Chunking automatically captures these

� If intermediate imagery steps are used during a subgoal, chunking cannot
capture those

� Chunks get created to build the structures on output-link, but the structures are
immediately removed by the cleanup rule since there is no state for them

This could be fixed, but not without modifying chunking

25

� This could be fixed, but not without modifying chunking

� Chunking should never completely remove non-symbolic steps from reasoning, though

� Solution: disable chunking in these subgoals

� GDS also causes non-symbolic subgoal processing to be handled differently
than symbolic

� In some cases, local o-supported imagery structures created based on local non-
symbolic reasoning can cause the GDS to remove the goal

� No solution, but not a common occurrence

