Augmenting Soar with Non-Symbolic Processing
via the 10-Link

29t Soar Workshop Samuel Wintermute
University of Michigan

Soar and SVS

SVS adds spatial and visual processing to Soar

This involves new non-symbolic memories
Memories cannot be “retrieved” into working memory

Conceptual problem:

How should these memories be integrated with symbolic
working memory?

Engineering problem:
What should the actual software look like?

Soar/SVS Architecture

Environment

Goal of Integration

: 0: 01 (initialize-blocks-world-look-ahead)
: ==>S: S2 (operator tie)
O: 08 (evaluate-operator)
==>S: S3 (operator no-change)
0: C1 (move-block)
==>S: S4 (operator tie)
0: 022 (evaluate-operator)
==>S: S5 (operator no-change)
0: C2 (move-block)
10: 0: 028 (move-block)
11: 0: 019 (move-block)
12: 0: 018 (move-block)
13: 0: 05 (move-block)
14: ==>S: S6 (operator tie)

coNOYUVT A WN B

O

15: O: 041 (evaluate-operator)
16: ==>S: S7 (operator no-change)
17: 0: C3 (move-block)

18: 0: 046 (move-block)

19: 0: 038 (move-block)
20: 0: 035 (move-block)
blocks-world achieved

Goal of Integration

1: 0: 01 (initialize-blocks-world-look-ahead)
2: ==>S: S2 (operator tie)

3: O: 08 (evaluate-operator)

4: ==>S: S3 (operator no-change)

5: 0: C1 (move-block)

6: ==>S: S4 (operator tie)

7: 0: 022 (evaluate-operator)

8: ==>S: S5 (operator no-change)
9: 0: C2 (move-block)
10: 0: 028 (move-block)
11: 0: 019 (move-block)
12: 0: 018 (move-block)

Bk
s

Goal of Integration

1: 0: 01 (initialize-blocks-world-look-ahead)
2: ==>S: S2 (operator tie)

3: O: 08 (evaluate-operator)

4: ==>S: S3 (operator no-change)

5: 0: C1 (move-block)

6: ==>S: S4 (operator tie)

7: 0: 022 (evaluate-operator)

8: ==>S: S5 (operator no-change)
9: 0: C2 (move-block)
10: 0: 028 (move-block)
11: 0: 019 (move-block)
12: 0: 018 (move-block)

13: 0: 05 (move-block)
14: ==>S: S6 (operator tie)

15: O: 041 (evaluate-operator)
16: ==>S: S7 (operator no-change)
17: 0: C3 (move-block)

18: 0: 046 (move-block)

19: 0: 038 (move-block)
20: 0: 035 (move-block)
blocks-world achieved

N N K

o

Imagery Rules

sp {apply*move-a-to-table
(state <s> ~block-a <a>
~operator.name move-a-to-table)
(<a> “on <on>)
-->
(<a> ~on <on> -
~on table)

Imagery Rules

sp {apply*move-a-to-table

(state <s>|

~operator.name move-a-to-table)
-->

(<s> | |
)

}
In what scenes should the rule match?

How should the scene be modified by the rule?

Define and name these properties
Create a qualitative symbolic interface

Imagery Rules

sp {apply*move-a-to-table
(state <s> “~property <x>
~property <y>
~property <z>

~operator.name move-a-to-table)

-->
(<s> ~property <x> -
<X2>
Aproperty <y> -
<y2>)

}
Imagery objects aren’t in WM, but are tightly related to it

How can this relationship be implemented?

Option: Interfacing via Action Operators

2: ==>S: S2 (operator tie)
3: 0: 08 (evaluate-operator)
4: ==>S: S3 (operator no-change)
0: XX (add-imagery-structure) * N
: XX (extract-property) * N
: C1 (move-block)
: XX (remove-imagery-structure)
: XX (add-imagery-structure)
0: XX (extract-property) * N
0: XX (remove-imagery-structure) * N
6: 0: 09 (move-block)

O O OOo

Treat imagery as an external environment modified via actions

Problems
Slow
Requires lots of knowledge

No truth maintenance
When are images added and removed?
When are properties valid?

Not a tight integration with working memory

10

Option: Use EpMem/SMem Interface

Separate interfaces at every state
Some truth maintenance benefit

Parallel access, not necessarily operator-based

Episodes and semantic structures are symbolic

Storage and retrieval are interesting, actually using the data is just regular Soar
processing

Imagery objects are not symbolic

“Storage” (WM -2 imagery) is different
Imagery structures are temporary, not long-term

“Retrieval” (imagery 2 WM) is different
Imagery objects can not be copied to WM, properties of objects are retrieved instead
Truth maintenance is a problem

More dynamic interface is needed

11

Working Memory Integration

State-local svs structure connects to imagery system

Most imagery operations are equivalent to a hidden set of
elaboration productions

svs {create*image svs {evaluate*intersect-query
(state <s> Nsvs <svs>) (state <s> Asvs <svs>)
(<svs> Nimage <im>) (<svs> Nintersection <i>)
(<im> Aproperty foo (<i> AMfirst-object image22
Nproperty bar) Nsecond-object image37)
--> -->
(<svs> Mobject-id image22) (<i> Mvalue true)
} }

Imagery structures persist with WM structures, and update when
WM changes

WM structures queried from imagery persist with query structure,
and update when WM or imagery state changes

12

Working Memory Integration

Symbolic State
top level goal q\ SVS o
J
(top-state) \
@
et
S
.. e L Spatial State
2
a block
clas/s?

_ relation, right-of
;ubgpal. C Svs image ocation :
imagine block A A Alcl B

~~~~~~~ |
o 1obJecm ) "Ax
3 ------- 4 .............
w| TEEEEETT e b e,
5]
[«
3
v c
first-id
subgoal: sSVS intersection ,-\4;1— id
evaluate block O >O ~J — B
position valueé
true

13



SVS Implementation

All communication happens at top-state over the io-link
Why?
Project integration is simple

Software evolved from originally using an operator-action
interface

It works well

Remainder of talk will cover implementation

14



Commands on SML Side

Problem: If commands aren’t associated with operators, many can
be present simultaneously

Solution: Allow this, but carefully consider monotonicity

Most SVS commands are monotonic
Can be processed in (pseudo) parallel

Even “persistent” structures are monotonic: these are like elaborations
of O-supported WM structures

These commands must be reversible, and retractions must be monitored

Intra-command interactions are still possible
Current SVS solution is to process commands in one carefully-ordered wave
Must guarantee working memory is consistent with commands by input phase

Some commands are non-monotonic
Actual actions passed to the external world
Internal commands with global effects

15



Soar Implementation Basics

Default productions are defined to

16

build svs structures on each state

copy commands to output-link from svs structures
associate commands with responses from input-link
fill in decisions requiring multiple i/o phases

keep output-link consistent with subgoal svs structures



Decision Cycle Integration

Problem: imagery structures can be i-supported, requiring
multiple waves to make a decision, but i/o happens
between decisions

Careful ordering on SML side handles some of this

Some cases require interleaved imagery and rule-
matching, and can’t be done in one decision

Partial solution: propose filler operator if any commands are
present without responses

17



Subgoal Integration

Problem: o-supported subgoal imagery must be removed
when subgoal goes away

Problem: i-supported subgoal imagery modifies output-
link, usually creating o-supported results

Solution: default cleanup production

If a command is ever present on output-link without an
equivalent command on an svs WME (on any state), it is
removed

Production must be o-supported, but does not need its own
operator

18



Subgoal Integration: Interaction Between States

Problem: There is only one instance of each memory in
SVS, but multiple subgoals may be present in Soar

Solution: monotonic commands prevent most problems

Commands in substates cannot interfere with results of
commands in superstates if all are monotonic

Non-monotonic commands must be issued at top-state

Superstate processing can still access imagery objects
created in substates

Could be fixed by notifying SVS of which state commands
belong to

19



Conclusion

Nuggets:

Rich, efficient interaction with non-symbolic memories over
the io-link is possible without Soar kernel modification

Resulting interface is useful and intuitive
Task knowledge can be concisely represented

Coal:

Multiple waves of i/o operation are impossible during the
decision cycle, resulting in extra decisions

Lack of direct connections to subgoals can cause minor
problems with chunking and GDS

20



Efficiently Processing Changes on SML Side

Problem: If commands exists for many cycles and have deep
structure, what if symbolic processing modifies them?

Solution: Detect changes in SML WME structures

Every new WME added via SML has a unique timetag, timetags
always increase

If commands are trees, hashing can be done O(# of WMEs)
Parse through WME tree, find highest timetag
Simultaneously count how many WMEs are in the tree

Hash is {WME count, highest timetag}
Adding a WME will result in a new count and new timetag
Modifying a WME will result in a new timetag
Deleting a WME will result in a lower count

Hash can detect changes quickly, but can’t detect what changed
Currently no general-purpose solution to this..

21



Binding Output and Input

Problem: Astatus complete is insufficient feedback for
commands

Solution: request-ids

In Soar, use make-constant-symbol to add an id whenever a
command appears

Externally keep track of id, return result with it on input-link

In Soar, link the result structure to the command structure
request-id need not concern agent developers

22



Binding Input and Output: Example

1: (svs.command <c> 2: (svs.command <c>)
<c> Aparameter one -->
Aparameter two) (<c> Mrequest-id (make-constant-symbol))
3: (<c> Arequest-id constant23) 4: (svs.command <c>)
. <c> request-id <id>
5: (output-link.command <c-copy> ( S 9 )

<c-copy> *parameter one

Aparameter two (output-link ~command (deep-copy<c>))

Arequest-id constant23) . process command, create response

7: (io.input-link.response <r> 8: (svs.command <c>)
<r> ~request-id constant23 (input-link.response <r>)
Nproperty a (<c> Mrequest-id <id>)
Nproperty b) (<r> Arequest-id <id>)

-->

9: (<c> Aresponse <r>) (<c> Aresponse <r>)

23



Binding Input and Output: Agent Developer View

1: (svs.command <c>
<c> Aparameter one
Aparameter two)

2: process command, create response
3: (<c> Aresponse <r>

<r> Aproperty a
Nproperty b)

24



Subgoal Integration: Chunking and GDS

If an imagery structure is supposed to be a result, it can be created on a
superstate’s svs WME

Chunking automatically captures these

If intermediate imagery steps are used during a subgoal, chunking cannot
capture those

Chunks get created to build the structures on output-link, but the structures are
immediately removed by the cleanup rule since there is no state for them

This could be fixed, but not without modifying chunking
Chunking should never completely remove non-symbolic steps from reasoning, though

Solution: disable chunking in these subgoals

GDS also causes non-symbolic subgoal processing to be handled differently
than symbolic

In some cases, local o-supported imagery structures created based on local non-
symbolic reasoning can cause the GDS to remove the goal

No solution, but not a common occurrence

25



