
The Need for Architecture Simulation:
Lessons from Computer Architecture

Bob Wray
Inspired and informed
by collaborations with:
• Jacob Crossman
• Randolph Jones
• Christian Lebiere

• Cognitive Architecture has not made the revolutionary impact one
might expect from the anticipatory rhetoric of the late 1980’s

• Continuing concern that there is little/poorly-founded scientific basis
for cognitive architecture research as practiced

Where are we…?

for cognitive architecture research as practiced

Larger Agenda: Return to the computer science notion of computer-
systems architecture as a basis for cognitive architecture
(e.g., Bell & Newell)

Today’s talk:
• What can our community learn from the ways CS architectures are

researched, developed, and deployed?

Architecture Simulation © 2009

Computer Systems Architecture

Outside (“user”) level
• Users design, compose, and implement

solutions (via arch-defined language)
• Abstracts lower-level details

Inside (“implementation”) level:

• Traditional computer systems:
successive levels of abstraction

• Each level describes an architecture,
together with one or more languages
running programs at that level

– Architecture defines the primitive
representations and processes

• “User” level is implemented via
composition of lower-level components

• Implementation of user-level constructs
can change without changing the
definition of those constructs

Every technology follows this pattern...

Architecture Simulation © 2009 3

representations and processes
– The language defines the instruction set

for instantiating the representations and
processes

Computer Architecture

• Common functional
components

• Similar organization and
data flowsdata flows

• Differences in
implementation (design
and fabrication)

• Look (mostly) the same
at the user level

Images: 7th Generation CPU Comparisons Paul Hsieh Architecture Simulation © 2009

How do computer-system architectures
get created today?

General pattern:
• Discrete levels of abstraction

– Transistor/gate level
– Microprogramming level
– Assembly language level

• Simulation is primary
methodology for research and
development
– System-level simulation: VHDL,

Verilog, SystemC
– Power, heat, layout simulations– Assembly language level

– “High-level” languages

• Tools and R&D teams focused
(almost) solely on one level

• Defined fabrication pipeline
(path for putting levels together)

• Application developers provide
requirements; use the end
product & provide feedback

– Power, heat, layout simulations
– Logic-circuit simulations

(SPICE)

• Benchmarks and data analysis
of patterns of prior use inform
simulations for future iterations
– Pipeline & cache modeling

Architecture Simulation © 2009 5

How do cognitive architectures get
created today?

General pattern:
• 2-3 (indistinct) levels

– User level (“Soar”, “ACT-R”)
– Algorithm Level (JTMS, RL)
– Implementation level

• Simulation is almost non-
existent for the purposes of
architecture-level simulation

• Benchmarks inform testing and
verification of releases

– Implementation level
(C/Lisp/Java)

• Tools and R&D teams effort
spread across all levels

• “Release,” not fabrication, model
• Application developers mostly

get what they get; many
architecture developers are also
application developers

Architecture Simulation © 2009 6

Simulation for Cognitive Architectures

• Recommendations:
– Recognize consensus and common design patterns
– Formalize & encapsulate recurring functional elements

• Foundation for cognitive-architecture simulation• Foundation for cognitive-architecture simulation
– Enable rapid, empirical design space explorations
– Facilitate composition of novel architectures
– Make applying lessons and design principles of

computer architecture more feasible
• Don’t optimize early / Make the common case fast

– Fabricate, not release

Architecture Simulation © 2009

Consensus and Commonality

• There is significant commonality across a range of
cognitive (and agent) architectures
– Mechanisms for associative memory & retrieval
– Unification over relational representations
– Integrating parallel associations and serial decisions– Integrating parallel associations and serial decisions
– Reason maintenance, etc.
– Examples:

• Soar, ACT-R, Epic, APEX, GLEAN, CAPS, SESAME, …
• JACK, JAM, RETSINA, SPARK, …

• Convergent evolution?
– Emergence of similar solutions in different design spaces

Architecture Simulation © 2009

Formalizing Common Themes

• Generalized model of memory for cognitive
architectures (CCRU)

C AL

Reconsider

Consider Commit

• Unique property:
• Three-state vs. two-state

memories
• Quite common in cog archs

• For each data structure /
representational element supported at

(Crossman, Wray, Jones, Lebiere, 2004)

C AL

Unconsider

L Latent

C Considered

A Activated

representational element supported at
the user level of an architecture:

– What process allows that element to
considered (part of a decision set)

– What process allows that element to be
committed (selected, activated)

– What process leads to the
reconsideration of commitment?

– What process leads to complete
removal/deactivation?

Architecture Simulation © 2009

Representational Level for Simulation

• CCRU Model could potentially
be extended to a full framework
for architecture simulation
– Components for all

representational primitives
– Define stubs for each CCRU

Examples
• Soar “beliefs” (i-support)

– Slots: Id, attr, value, timetag
– Con/Com: Matching
– Reconsider: JTMS

– Define stubs for each CCRU
process

– Simple, configurable control loop
(e.g., Wooldridge, 2000)

• Result: “Primitives” for
composing and instantiating
existing & novel architectures

– Reconsider: JTMS
– Uncommit: JTMS

• What are the consequences of
different approaches
to belief reconsideration?
– ACT-R: Activation threshold
– Soar: JTMS
– 4D/RCS: FIFO
– SPARK: Belief revision

Architecture Simulation © 2009 10

Summary & Conclusions

Nuggets
• Cognitive architectures are CS

architectures
• CS methods & tools offer insights

Coal
• Are cognitive architectures in

practice more like s/w architectures
than computer architectures?

Emerging architectural consensus suggests that this
field is learning something powerful & important

• CS methods & tools offer insights
for:

– Speeding cognitive architecture
R&D

– Exploiting architectural advances for
applications

– Organizing community around
common concepts and standards

• Common themes & solutions recur
across cognitive arch. research

than computer architectures?

• Investment in simulation tools will
require a lot of commitment

• What’s the compelling technical (or
sociological?) demonstration that
could trigger sustained investment?

A good topic re future workshop formats? ☺

Architecture Simulation © 2009 11

