

- Cognitive Architecture has not made the revolutionary impact one might expect from the anticipatory rhetoric of the late 1980's
- Continuing concern that there is little/poorly-founded scientific basis for cognitive architecture research as practiced

Larger Agenda: Return to the computer science notion of computersystems architecture as a basis for cognitive architecture (e.g., Bell & Newell)

Today's talk:

• What can our community learn from the ways CS architectures are researched, developed, and deployed?

Architecture Simulation

m 0000

Computer Systems Architecture

- Traditional computer systems: successive levels of abstraction
- Each level describes an architecture, together with one or more languages running programs at that level
 - Architecture defines the primitive representations and processes
 - The language defines the instruction set for instantiating the representations and processes

Outside ("user") level

- Users design, compose, and implement solutions (via arch-defined language)
- · Abstracts lower-level details

Inside ("implementation") level:

- "User" level is implemented via composition of lower-level components
- Implementation of user-level constructs can change without changing the definition of those constructs

Every technology follows this pattern...

Computer Architecture

- Common functional components
- Similar organization and data flows
- Differences in implementation (design and fabrication)
- Look (mostly) the same at the user level

Architecture Simulation

© 2009

How do computer-system architectures get created today?

General pattern:

- Discrete levels of abstraction
 - Transistor/gate level
 - Microprogramming level
 - Assembly language level
- "High-level" languages
- Tools and R&D teams focused (almost) solely on one level
- Defined fabrication pipeline (path for putting levels together)
- Application developers provide requirements; use the end product & provide feedback
- Simulation is primary methodology for research and development
 - System-level simulation: VHDL, Verilog, SystemC
 - Power, heat, layout simulations
 - Logic-circuit simulations (SPICE)
- Benchmarks and data analysis of patterns of prior use inform simulations for future iterations
 - Pipeline & cache modeling

How do cognitive architectures get created today?

General pattern:

- 2-3 (indistinct) levels
 - User level ("Soar", "ACT-R")
 - Algorithm Level (JTMS, RL)
 - Implementation level (C/Lisp/Java)
- Tools and R&D teams effort spread across all levels
- "Release," not fabrication, model
- Application developers mostly get what they get; many architecture developers are also application developers
- Simulation is almost nonexistent for the purposes of architecture-level simulation
- Benchmarks inform testing and verification of releases

Architecture Simulation © 2009 5

Architecture Simulation © 2009

Simulation for Cognitive Architectures

- Recommendations:
 - Recognize consensus and common design patterns
 - Formalize & encapsulate recurring functional elements
- Foundation for cognitive-architecture simulation
 - Enable rapid, empirical design space explorations
 - Facilitate composition of novel architectures
 - Make applying lessons and design principles of computer architecture more feasible
 - · Don't optimize early / Make the common case fast
 - Fabricate, not release

Consensus and Commonality

- There is significant commonality across a range of cognitive (and agent) architectures
 - Mechanisms for associative memory & retrieval
 - Unification over relational representations
 - Integrating parallel associations and serial decisions
 - Reason maintenance, etc.
 - Examples:
 - Soar, ACT-R, Epic, APEX, GLEAN, CAPS, SESAME, ...
 - JACK, JAM, RETSINA, SPARK, ...
- Convergent evolution?
 - Emergence of similar solutions in different design spaces

Formalizing Common Themes

Generalized model of memory for cognitive • Unique property: architectures (CCRU)

(Crossman, Wray, Jones, Lebiere, 2004)

- - · Three-state vs. two-state memories
 - · Quite common in cog archs
- For each data structure / representational element supported at the user level of an architecture:
 - What process allows that element to considered (part of a decision set)
 - What process allows that element to be committed (selected, activated)
 - What process leads to the
 - econsideration of commitment?
 - What process leads to complete removal/deactivation?

Representational Level for Simulation

- CCRU Model could potentially be extended to a full framework for architecture simulation
- Components for all representational primitives
- Define stubs for each CCRU
- Simple, configurable control loop (e.g., Wooldridge, 2000)
- · Result: "Primitives" for composing and instantiating existing & novel architectures

Examples

- Soar "beliefs" (i-support)
 - Slots: Id, attr, value, timetag
 - Con/Com: Matching
 - Reconsider: JTMS
- Uncommit: JTMS
- · What are the consequences of different approaches to belief reconsideration?
 - ACT-R: Activation threshold
 - Soar: JTMS
 - 4D/RCS: FIFO
 - SPARK: Belief revision

Summary & Conclusions

Emerging architectural consensus suggests that this field is learning something powerful & important

Nuggets

- · Cognitive architectures are CS architectures
- · CS methods & tools offer insights
 - Speeding cognitive architecture R&D Exploiting architectural advances for
- applications Organizing community around common concepts and standards
- Common themes & solutions recur across cognitive arch. research

Coal

- Are cognitive architectures in practice more like s/w architectures than computer architectures?
- · Investment in simulation tools will require a lot of commitment
- What's the compelling technical (or sociological?) demonstration that could trigger sustained investment?

A good topic re future workshop formats? @

Architecture Simulation