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Motivation

1 Replicate the results described in [Dietterich, 1998]

2 Determine how to bring the cooling techniques employed by
a special purpose one-off technique (MAXQ) to a general purpose
architecture (Soar)

3 Demonstrate advantages of MAXQ HRL over flat RL
4 Demonstrate value of MAXQ HRL cooling techniques
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Background The Taxicab Domain

Basic Information

1 Initial conditions
a. 5x5 grid world
b. 4 sources/destinations
c. Refueling station
d. Impassable walls
e. [5,12] fuel, capped at 14

2 Goals
a. Pick up passenger
b. Deliver to destination
c. Avoid running out of fuel
d. Always achievable

3 Rewards
a. −1 for a legal action
b. −10 for an illegal action
c. −20 for running out of fuel
d. 20 for delivering the passenger
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Background Reinforcement Learning

Reinforcement Learning

1 Reinforcement learning problem
a. Agent
b. Environment and reward signal

2 Q-learning–a temporal difference (TD) method
3 TD methods involve a value function

a. Expected future reward
b. One value per action per state in the limit

4 Should converge on optimal policy
a. Learn value function
b. Stop exploring
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Background Reinforcement Learning

MAXQ Hierarchical Reinforcement Learning
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Figure: Dietterich’s MAXQ Hierarchy.

1 Formulated by
[Dietterich, 1998]

2 Max nodes represent goals
a. Each goal is an RL problem
b. Each has its own cooling

strategy

3 A Max node cools on success
if the absolute Bellman error
per step is low

a. Assumes success
b. Assumes deterministic

environment
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Background Soar

Soar-RL

sp {reinforce*putdown*151
(state <s> ˆoperator <o> +)
(<o> ˆname putdown

ˆpassenger true
ˆx 0 ˆy 0
ˆdestination yellow)

-->
(<s> ˆoperator <o> = 20.)

}

Figure: Abstract view of a putdown proposal

1 Proposal rules assigned Q values
2 Boltzmann indifferent-selection decides between proposals
3 Q values modified when rewards received
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Background Soar

Boltzmann indifferent-selection
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Figure: Boltzmann indifferent-selection prefers actions with higher Q values

1 Start with a high temperature
a. Choose almost randomly

2 End with a low temperature
a. Choose the best almost exclusively

3 Interpolate in between
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Modifications to Soar

Architectural Modifications

Cooling schedule for HRL proposed and implemented
by [Dietterich, 1998]

1 Support per-goal cooling schedules
2 Slow cooling

a. Require low average absolute Bellman error per step
b. Require success
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Agent Construction

Basic Details

1 Agent knows
a. Taxi’s position
b. Current type of cell
c. Fuel available
d. Where the passenger is
e. Where the passenger wants to go

2 Seven choices of action from any state
3 Environment provides rewards
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Agent Construction Flat RL Agent

Flat RL Agent

1 Actions unrestricted
2 Pickup and Putdown coded coarsely
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Agent Construction MAXQ HRL Agent

Basics
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Figure: Dietterich’s MAXQ Hierarchy.

1 Max nodes represent plans
2 Q values represent

knowledge of implementation
3 Much more coarse coding
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Agent Construction MAXQ HRL Agent

Reward Assignment
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Figure: Dietterich’s MAXQ Hierarchy.

1 ±20 passed to MaxRoot
2 −10 passed to MaxGet,

MaxPut, and MaxRefuel
3 −1 passed to all layers of the

hierarchy
4 Internal reward of 10

generated for the MaxGet
5 Internal reward of 10

generated for the MaxRefuel
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Methodology and Results

Motivation and Overview

1 Wanted to replicate the result from [Dietterich, 1998], that MAXQ
hierarchical reinforcement learning is superior to flat
reinforcement learning in a task as difficult as the taxicab domain

2 Wanted to show that the cooling schedule of MAXQ offers an
advantage over HRL without MAXQ

3 In both the finite task and the infinite task, the non-MAXQ HRL
agent was changed in the following ways:

a. Only one temperature for the whole agent
b. Absolute Bellman error per step is ignored
c. Failure is ignored for purposes of disabling learning and cooling
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Methodology and Results

Plot Information

Optimal (60 Runs Averaged)

Flat RL (30 Runs Averaged)

MAXQ HRL (30 Runs Averaged)

Agent Performance in the Taxicab Domain with Infinite Fuel
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1 Plots are averaged over
30 sets of episodes

2 Afterward, they are
smoothed using a
moving average with a
window of 200 episodes

3 Error bars indicate
minima and maxima
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Methodology and Results Infinite Task

Flat vs MAXQ HRL

Optimal (60 Runs Averaged)

Flat RL (30 Runs Averaged)

MAXQ HRL (30 Runs Averaged)
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1 The HRL agent was untuned,
and used the same
parameters as the agent for
the finite fuel task

2 After disabling exploration
after 3, 000 episodes

a. The optimal reward
possible over 5, 000
episodes was 1.09
reward per step

b. The flat agent averaged
1.00 reward per step

c. The hierarchical agent
averaged 1.09 reward
per step and matched
the optimal for all 5, 000
episodes in all 30 runs
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Methodology and Results Infinite Task

Effect of MAXQ

Modified Agent Performance in the Taxicab Domain with Infinite Fuel
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1 Results from the same HRL
agent with all cooling rates
reduced to 0.97 are plotted
against the previous flat agent
results

2 This new choice of cooling rate
for all Max nodes was untuned

3 The hierarchical agent still
averaged 1.09 reward per step
but only matched the optimal
for all 5, 000 episodes in 28
runs this time

4 Without Dietterich’s cooling
techniques, learning slowed
significantly, but the agent
averaged 1.10 reward per step
and matched the optimal for all
5, 000 episodes in all 30 runs
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Methodology and Results Finite Task

Flat vs MAXQ HRL

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

R
ew

ar
d
 p
er
 S

te
p
 (
M

o
v
in
g
 A

v
er
ag

e 
O
v
er
 2
0
0
 E

p
id
o
es

)

Episode Number

Optimal (30 RunsAveraged)

Flat RL (30 Runs Averaged)

MAXQ HRL (30 Runs Averaged)

Flat RL (Dietterich's 1998 Run)

MAXQ HRL (Dietterich's 1998 Run)

Agent Performance in the Taxicab Domain with Finite Fuel

Mean Optimal Performance

Hierarchical
Flat

Dietterich's Flat

Dietterich's
Hierarchical

1 After disabling exploration
after 50, 000 episodes

a. The optimal reward
possible over 5, 000
episodes was 0.93
reward per step

b. The flat agent averaged
−0.83 reward per step
and the hierarchical
agent averaged 0.86
reward per step

2 My hierarchical Soar agent
learns more slowly than that
of [Dietterich, 1998], although
both manage to achieve a
virtually optimal policy by the
end of 50, 000 runs
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Methodology and Results Finite Task

Effect of MAXQ

10,000 20,000 30,000 40,000 50,000

Optimal (60 Runs Averaged)

MAXQ HRL (30 Runs Averaged)

HRL without MAXQ (30 Runs Averaged)
1 Once Dietterich’s cooling

techniques are disabled,
learning actually speeds
up a bit

2 However this agent
averaged only 0.75
reward per step, which is
significantly less than the
0.86 received when
using these techniques
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Discussion

Future Work - Cooling Strategies

1 Important to take from [Dietterich, 1998] the importance of cooling
on success

2 Exploration of more finely grained cooling strategies
3 Possible features of a successful strategy

a. Pass back success signal with rewards
b. Keep track of moving average of success rate
c. Map this average to a temperature
d. Use maximum temperature of available options

4 Possible goals
a. Better fit temperature to learning
b. Make coarse coding more useful
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Nuggets and Coal
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Nuggets and Coal

Mineral Resources

Nuggets

1 Implementing the cooling
strategies employed
by [Dietterich, 1998] in Soar was
straightforward

2 The cooling strategies of MAXQ
HRL have been integrated into
Soar

3 The value of MAXQ HRL over
flat RL has been verified

4 Shown that the MAXQ cooling
strategies are of value

Coal

1 Need to be able to evaluate
success

2 Unclear that the problem
formulation is identical
to [Dietterich, 1998]

3 Unable to reproduce Dietterich’s
level of success with the flat RL
agent

4 No public release of architectural
modifications yet
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Nuggets and Coal

Thomas G. Dietterich.
The maxq method for hierarchical reinforcement learning.
In In Proceedings of the Fifteenth International Conference on
Machine Learning, pages 118–126. Morgan Kaufmann, 1998.
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