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Outline

* Update from Soar Workshop 2009

— A Soar Model of Bottom-Up Learning from Activity
* Experiment

— Demonstration

— Algorithm
* Results

— Developmental approach to cognition
— Soar for something else than problem solving
— Future work



This is not a maze

... this is a hierarchical sequence
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This is not perception

Touch: Move: Turn:

@

@

... this is sensorimotor schemes (Piaget, 1937)
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This not about reward

* Impetus = expectations it works * Satisfaction
 Bumped episodes (n) * Satisfaction bumping (-10)
* + Moved episodes (m) * Satisfaction moving (10)
e = impetus to try to move

* This is self-motivation
— In-born predilection for sensorimotor schemes
— Pre-defined impetus
— Self-organization of behavior



Elaboration of behavior
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Learning Mechanism
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Construct and test episode
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Anticipative Situation Awareness

@ Enacted act S12,1 || S13,1
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Results

It learns to increase it's satisfaction/step

It learns to perceive its environment
— No pre-defined perceptual buffer
— Pragmatic understanding of perception

It constructs a situation awareness

— Includes anticipation and affordances

It constructs temporal episodes

— Episodic memory with temporal patterns



Alternative view of cognition

From: To:
Elaboration

Symbolic computation

\\ Scheme I\ N >
_ Scheme eme
- con Action —:lLl)
ereepto w Scheme > |Scheme >
Environment

Keeps perception and action unified (plenty of authors)
Grounds meaning in activity (Harnad, 1990)
Opens the way to second-stage learning (Piaget, 1937)



Weaknesses

* |tis very low level
* Long way to go

* Unusual usage of Soar

— Soar helps a lot
* Graph processing, valued preference mechanism...

— But

* Soar is optimized the other way around
* Maybe use semantic memory to store episodes?
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Future work

Gradually increase complexity

Support distal perception

Support distal/spatial representations

Support internal simulations of course of action

— Based on learned ability to predict and on action inhibition

— Would (we hope) lead to the emergent autonomous
construction of symbols

Blog: http://e-ernest.blogspot.com/




