
1

Soar Tutorial:
Building Intelligent Agents Using Soar

John E. Laird
University of Michigan

30th Soar Workshop, 2010
laird@umich.edu

2

Tutorial Outline
1.  Cognitive Architecture
2.  Soar History
3.  Hello-World (simple syntax)
4.  Water Jug (internal problem solving)
5.  Eaters (simple external interaction)
6.  Tank-Soar (more external interaction & subgoals)
7.  Water Jug with subgoals and learning

My goal is for you to understand Soar enough to learn the
rest on your own from the Tutorial and Manual.

3

•  Goal:
•  General, human-level behavior
•  Human capabilities across a broad range of tasks

•  Approach:
•  Cognitive Architecture = fixed structures, mechanisms, and

representations
•  Emphasized functionality & higher level cognition

•  Effective and efficient end-to-end performance
•  Scale to very large knowledge bases
•  Make use of whatever forms of knowledge available
•  Meta-reasoning, episodic memory, appraisals

3

Research Goals and Approach

4

TASK: ??

Role of Cognitive Architecture

General Capabilities: Planning,
Reasoning, Language, …

Cognitive Architecture

architecture for

architecture for

Computer
Architecture

architecture for
Brain
Architecture

5

What is Cognitive Architecture?

Fixed mechanisms and structures that underlie cognition
•  Processors that manipulate data
•  Memories that hold knowledge
•  Representations of knowledge
•  Interfaces with an environment

•  Sharp distinction between
•  task-independent architecture and
•  task-dependent knowledge

6

Different Goals of
Cognitive Architecture Research

•  Biological modeling:
•  Does the architecture correspond to what we know about the

brain?

•  Psychological modeling:
•  Does the architecture capture the details of human

performance in a wide range of cognitive tasks?

•  Functionality:
•  Does the architecture explain how humans achieve their

high level of intellectual function?
•  Does the architecture support the creation of useful systems?

7

Classification of Current Architectures
Goal

Type of Model Design Inspiration

Modeling Functionality

Brain
Leabra

Psychology
ACT-R
EPIC

4CAPS
Clarion

LIDA/IDA

Soar
ICARUS

Companions
Polyscheme

Psychology
4D/RCS*
Comirit
NARS
NCE

VARIAC
I-Cog

Engineering
OSCAR
MicroPsi

RASCALS

Logic

8

Common Structures of many
Cognitive Architectures

Short-term Memory

Procedural
Long-term

Memory

Declarative
Long-term

Memory

Perception Action

Action
Selection

Procedure
Learning

Declarative
Learning

Goals

9

Common Processing Across
Architectures

•  Complex behavior arises from sequence of simple
decisions over internal and external actions controlled by
knowledge
•  Significant internal parallelism, limited external parallelism
•  For cognitive modeling, ~50msec is basic cycle time of

cognition

•  Knowledge access must be bounded for reactivity
•  Learning is incremental & on-line

10

Examples of Cognitive Architectures
•  ACTE through ACT-R (Anderson, 1976; Anderson, 1993)
•  Soar (Laird, Rosenbloom, & Newell, 1984)
•  Prodigy (Minton & Carbonell., 1986; Veloso et al., 1995)
•  PRS (Georgeff & Lansky, 1987)
•  CIRCA (Munsliner & Atkins, 1993)
•  3T (Gat, 1991; Bonasso et al., 1997)
•  EPIC (Kieras & Meyer, 1997)
•  APEX (Freed et al., 1998)
•  4D/RCS (Albus)
•  Clarion (Sun)
•  Polyscheme (Cassimatis 2004)
•  ICARAUS (Langley & Shapiro, 2003)

11

Why Architecture Matters
•  A commitment to common computational primitives

 which determine:
•  The complexity profile of an agent’s computations
•  The building blocks for creating a complete agents
•  The primitive unit of reasoning/deliberation/learning
•  The primitive units of knowledge
•  What is fixed and unchanging vs. what is programmed/learned

•  Major achievements: integration
•  Reaction, deliberation, planning, meta-reasoning, learning

•  Lots of knowledge that is really used
•  Integrated theory of wide range of human behavior

•  50ms is a magic number
•  Taskable performance/embedded systems

12

Historical Perspective: Soar

Human Problem Solving
Goal-directed search
Rule-based systems

Newell & Simon

1960 1970 1980 1990 2000 2010

13

Historical Perspective

Efficient rule-based systems

Expert Systems

Rule
Memory

Working

Memory

1960 1970 1980 1990 2000 2010

14

Historical Perspective

Soar
 Multi-method problem solving
 Knowledge-based, hierarchical
 reasoning, search, meta-level
 reasoning, and learning

 “Inside the head” problems
 R1-Soar: Computer Configuration

1960 1970 1980 1990 2000 2010

15

Historical Perspective

External environments
 Extreme efficiency
 Mobile robot control
 Stick control of simulated plane
Model human behavior
 Natural language
 Human-computer interaction
 Many forms of learning

Air-Soar Hero-Soar

1960 1970 1980 1990 2000 2010

16

Historical Perspective

TacAir-Soar

Intelligent Forces for Training
 WISSARD/IFOR (DARPA)
 Fixed-wing aircraft (UM)
 Rotary-wing aircraft (USC/ISI)
 STOW-E
 STOW-97 – 700 sorties, 100 in air

E-2C

GCC

Target 1

FACWanda

original flight
actual flight path

Cougar

TADTACC

F/A-18’s
1

2

3

4

5

MiG-23’s
radio

Elmer

Jud

6

1960 1970 1980 1990 2000 2010

17

Historical Perspective

Soar Quakebot Haunt 2

Soar Technology, Inc.
 Develop and deploy IFORs
Computer Game AIs
USC/ICT
 Teamwork
 Integrated Virtual Humans

1960 1970 1980 1990 2000 2010

18

Example Applications

Soar Quakebot
Anticipation of
Enemy Actions

Urban Combat
Transfer Learning

Soar MOUTbot
Team Tactics and

Unpredictable Behavior

SORTS
Spatial Reasoning & Real-

time Strategy

E-2C

GCC

Target 1

FACWanda

original flight
actual flight path

Cougar

TADTACC

F/A-18’s
1

2

3

4

5

MiG-23’s
radio

Elmer

Jud

6

TacAir-Soar
Complex Doctrine &

Tactics Execution

Haunt
Actors and Automated

Direction

Splinter-Soar
Robot Control

Scout Domain
Mental Imagery

19

Historical Perspective

Architectural Extensions
 Episodic & Semantic Learning
 Reinforcement Learning
 Emotions
 Imagery

1960 1970 1980 1990 2000 2010

Body

Long-Term Memories

Episodic

Perception Action

Procedural Semantic

Short-Term Memory

Decision
Procedure A

pp
ra

is
al

D

et
ec

to
r

Soar 9

Chunking Episodic
Learning

Reinforcement
Learning

Semantic
Learning

20

Distinctive Features of Soar
•  High performance

•  Can build very large systems that run for a long time

•  Integrates reaction, deliberation, meta-reasoning
•  Dynamically switching between them

•  Integrated learning
•  Adding reinforcement learning, episodic & semantic

•  Useful in cognitive modeling
•  Expanding this is emphasis of many current projects

•  Easy to integrate with other systems & environments
•  SML efficiently supports many languages, inter-process

•  Many tools to aid development
•  Visual-Soar, Debugger, …

21

System Architecture

Soar Kernel

KernelSML

ClientSML

SWIG Language
Layer

Application

SML

Soar Kernel (C)

Encodes/Decodes function calls
and responses in XML (C++)

Soar Markup Language

Encodes/Decodes function calls
and responses in XML (C++)

Wrapper for Java/Tcl (Not needed
if app is in C++)

Application (any language)

22

Long-term Procedural Memory
Production Rules

Short-term Declarative Memory

Basic Soar Structure

Decision
Procedure

Rule
Matcher

GUI
…

Perception

Action

Preference
Memory

Working Memory

+ -, >, <

23

Core Soar

Agent in real or virtual world

?

Agent in new situation/state

?

Agent in new state

Operator

24

Core Soar

Long-term memory
 Possible actions, effects of actions, facts,
 episodes, expected rewards, preferences,
…
Short-term memory
 Current situation, goals, intentions,
 hypothetical states, …

?

25

Soar Basics
•  Operators: Deliberate changes to internal/external state
•  Activity is a series of operators controlled by knowledge:

1.  Input from environment
2.  Elaborate current situation: parallel rules
3.  Propose and evaluate operators via preferences: parallel rules
4.  Select operator
5.  Apply operator: Modify internal data structures: parallel rules
6.  Output to motor system

26

•  Current operator only changes when decision changes.
•  Reasons for new decision:

•  proposal instantiation no longer matches and retracts proposal
 or other operators dominate selection through preferences

Operator Selection

Elaborate State
Propose Operators
Evaluate Operators

(rules)
Apply Operator

(rules)
Select Operator Output Input

27

Example Working Memory

B

A
(s1 ^block b1 ^block b2 ^table t1)
(b1 ^color blue ^name A ^ontop b2 ^size 1
 ^type block ^weight 14)
(b2 ^color yellow ^name B ^ontop t1 ^size 1
 ^type block ^under b1 ^weight 14)
(t1 ^color gray ^shape square
 ^type table ^under b2)

Working memory is a graph.
All working memory elements must be “linked” directly or indirectly to a state.

S1

b1

t1

b2

^block

^block

^table

yellow

block

1

B

14

^color

^name

^size

^type

^weight

^under

^ontop

28

Initial Working Memory

^type

^io

superstate

state

nil

^input-link

^output-link

S1! I1!

I2!

I3!

S1 ^superstate nil
S1 ̂ io I1
S1 ^type state
I1 ^output-link I2
I1 ^input-l ink I3
(S1 ^ io I1 ^superstate nil ^type state)
(I1 ^input-link I3 ^output-link I2)

29

Simple Soar Syntax
Hello World Rule

sp {hello-world
 (state <s> ^type state)
-->
 (write |Hello World|)
 (halt)}

If I exist,
then write |Hello World| and halt.

30

Hello World Operator

Testing selected
operator

Creating acceptable
preference for
operator

sp {apply*hello-world
 (state <s> ^operator <o>)
 (< o> ^name hello-world)
-->
 (write |Hello World|)
 (halt)}

sp {propose*hello-world
 (state <s> ^type state)
-->
 (< s> ^operator <o> +)
 (< o> ^name hello-world)}

Propose*hello-world:
If I exist, propose the hello-world operator.

Apply*hello-world:
If the hello-world operator is selected, write “Hello World”
and halt.

31

Decision
Procedure

Production
Memory

Working
Memory

Soar 101
Internal Problem Solving

Propose
Operator

Compare
Operators

Select
Operator

Propose
Operator

Compare
Operators

Select
Operator

Apply
Operator

Elaborate
State

sp {propose*hello-world
 (<s> ^type state)
-->
 (<s> ^operator <o> +)
 (<o> ^name hello-world)}

sp {apply*hello-world
 (<s> ^operator <o>)
 (<o> ^name hello-world)
-->
 (write |Hello World|)
 (halt)}

(s1 ^type state
 ^superstate nil
 ^io i1
 …)

Elaborate
State

(s1 ^operator o1 +)
(o1 ^name hello-world)

(s1 ^operator o1)

sp {propose*hello-world
 (<s> ^type state)
-->
 (<s> ^operator <o> +)
 (<o> ^name hello-world)}

sp {apply*hello-world
 (<s> ^operator <o>)
 (<o> ^name hello-world)
-->
 (write |Hello World|)
 (halt)}

Hello World

sp {propose*hello-world
 (<s> ^type state)
-->
 (<s> ^operator <o> +)
 (<o> ^name hello-world)}

sp {apply*hello-world
 (<s> ^operator <o>)
 (<o> ^name hello-world)
-->
 (write |Hello World|)
 (halt)}

32

Operators in Working Memory

•  To be considered for selection, an operator must have an
acceptable preference on the state.
(s1 ^operator o1 +)

•  Operators must have a declarative representation in
working memory (something rules can test, such as name).
(o1 ^name hello-world)

•  Rules can test for an acceptable operator preference
(<s> ^operator <o> +) and create more preferences.

•  When an operator is selected, there is a working memory
element in the state (different than the preference)
(s1 ^operator o1)

•  Rules that test for a selected operator
(<s> ^operator <o>) apply the operator by modifying the state.

33

Water Jug Problem
You are given two empty jugs. One holds five gallons of
water and the other holds three gallons.

There is a well that has unlimited water that you can use
to completely fill the jugs. You can also empty a jug or
pour water from one jug to another.

There are no marks for intermediate levels on the jugs.

The goal is to fill the three-gallon jug with one gallon of
water.

34

Operators and States
•  Operators:

•  Fill a jug from the well.
•  Empty a jug into the well.
•  Pour water from a jug to a jug.

•  States
•  Jug-a

•  Volume: 5 gallons
•  Contents: X gallons
•  Empty: Y gallons

•  Jug-b
•  Volume: 3 gallons
•  Contents: M gallons
•  Empty: N gallons

35

Water Jug State Structure
•  name water-jug
•  jug-a

•  Volume: 5 gallons
•  Contents: x gallons
•  Empty: y gallons

•  jug-b
•  Volume: 3 gallons
•  Contents: m gallons
•  Empty: n gallons

(<s> ^name water-jug)
(<s> ^jug <j1>)
(<s> ^jug <j2>)

(<j1> ^volume 5)
(<j1> ^contents 0)
(<j1> ^empty 5)

(<j2> ^volume 3)
(<j2> ^contents 0)
(<j2> ^empty 3)

multi-valued
attribute

36

Decision
Procedure

Production
Memory

Short term
Memory
(working

memory &
preference
memory)

Soar 102
Internal Problem Solving

Propose
Operator

Compare
Operators

Apply
Operator

Select
Operator

If jug <j> empty >
0,
-->
propose operator
to fill jug <j>

If selected operator
fills jug <j>
-->
<j> ^contents gets
<j> ^volume

Propose
Operator

Compare
Operators

Select
Operator

Apply
Operator

If operator <o>
empties a jug
-->
operator <o> <

Elaborate
State

If jug <j> has
content <c>,
volume <v>,
-->
^empty <v> - <c>

If no jugs,
-->
propose operator
initialize state

If selected operator is
initialize state
-->
<ja> ^contents 0 ^volume 5
<jb> ^contents 0 ^volume 3

j1 j2

Operator: initialize state

j1 ^volume 5 ^contents 0

j2 ^volume 3 ^contents 0

Operator: fill j1

 ^empty 5

 ^empty 3

Elaborate
State

 ^empty 0
j1 ^volume 5 ^contents 5 Persistent

Persistent
Not-persistent

Not-persistent

Operator proposal: fill j1, fill j2 Operator proposal: fill j2

If jug <j> contents
> 0,
-->
propose operator
to empty jug <j>

37

Water Jug Operators

•  Initialize-water-jug
•  Fill a jug from the well
•  Empty a jug into the well
•  Pour water from a jug to a jug

•  For every operator, must define at least two rules:
1.  Proposal creates operator structure in working memory

•  Usually includes name and parameters (^fill-jug, ^empty-jug)
2.  Application tests for selected operator

•  Makes changes to the state (based on parameters)

•  Can also create evaluation rules, but not always necessary
•  These rules create preferences

38

Initialize-water-jug

•  Proposal
If no task is selected,

then propose the initialize-water-jug operator.

•  Application
If the initialize-water-jug operator is selected,
then create an empty 5 gallon jug and an empty 3 gallon jug.

sp {propose*initialize-water-jug
 (state <s> ^superstate nil
 -^name)
 -->
 (<s> ^operator <o> +)
 (<o> ^name initialize-water-jug)}

sp {apply*initialize-water-jug
 (state <s> ^operator <o>)
 (<o> ^name initialize-water-jug)
 -->
 (<s> ^name water-jug
 ^jug <j1>
 ^jug <j2>)
 (<j1> ^volume 5
 ^contents 0)
 (<j2> ^volume 3
 ^contents 0)}

Test that name
doesn’t exist

39

Elaboration of ^empty

If a jug has volume v and contents c, then it has empty v – c.

^empty is instantiation-supported = i-support

When this instantiation retracts, the working memory element is removed.
The rule may match new values and produce a new working memory element.

sp {water-jug*elaborate*empty
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> ^volume <v>
 ^contents <c>)
 -->
 (<j> ^empty (- <v> <c>))}

Subtraction of <c> from <v>

40

Instantiations

For each set of WMEs that successfully match the rule, an instantiation is created.
(s1 ^name water-jug) (s1 ^name water-jug)
(s1 ^jug j1) (s1 ^jug j2)
(j1 ^volume 5) (j2 ^volume 3)
(j1 ^contents 0) (j2 ^contents 0)

Both instantiations fire in parallel, creating two new WMEs:
(j1 ^empty 5) (j2 ^empty 3)
If one of the matched WMEs in an instantiation in removed, the WME it created is removed.

sp {water-jug*elaborate*empty
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> ^volume <v>
 ^contents <c>)
 -->
 (<j> ^empty (- <v> <c>))}

41

Fill Jug

•  Proposal
If there is a jug that is not full, then propose the fill operator.

•  Application
If the fill operator is selected for a jug,
then change the contents of that jug to its volume.

sp {water-jug*propose*fill-water-jug
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> ^empty > 0)
 -->
 (<s> ^operator <o> + =)
 (<o> ^name fill
 ^fill-jug <j>)}

sp {water-jug*apply*fill-water-jug
 (state <s> ^name water-jug
 ^operator <o>)
 (<o> ^name fill
 ^fill-jug <j>)
 (<j> ^volume <v>
 ^contents <c>)
 -->
 (<j> ^contents <v>
 ^contents <c> -)}

Only match if
value > 0

Causes WME to
be removed

= means indifferent
(a random selection will be made)

42

Multiple Instantiations

For each set of working memory elements that successfully match the rule, an instantiation is created.
(s1 ^jug j1) (s1 ^jug j2)
(j1 ^empty 5) (j2 ^empty 3)

Both instantiations fire, creating two new operators and preferences:
Working Memory Elements:
(s1 ^operator o1 +) (s1 ^operator o2 +)
(o1 ^name fill) (o2 ^name fill)
(o1 ^fill-jug j1) (o2 ^fill-jug j2)
Preferences:
(s1 ^operator o1 +) (s1 ^operator o2 +)
(s1 ^operator o1 =) (s1 ^operator o2 =)
The decision procedure will pick only one (randomly because they are indifferent).

sp {water-jug*propose*fill-water-jug
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> ^empty > 0)
 -->
 (<s> ^operator <o> + =)
 (<o> ^name fill
 ^fill-jug <j>)}

43

Persistence!
•  Actions of non-operator application rules retract when

rule no longer matches
•  No longer relevant to current situation
•  Operator proposals and state elaboration
•  Instantiation-support = i-support
•  Rule doesn’t test operator and modify state.

•  Elaborate state
•  Propose operator
•  Create operator preferences

•  Actions of operator application rules persists indefinitely
•  Otherwise actions retract as soon as operator isn’t selected
•  Operators perform non-monotonic changes to state
•  Operator-support = o-support
•  Rule tests a selected operator and modifies the state

•  Operator application

44

Empty Jug

Proposal
If there is a jug that is not empty,
then propose the empty operator.
sp {water-jug*propose*empty
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> ^contents <> 0)
 -->
 (<s> ^operator <o> + =)
 (<o> ^name empty
 ^empty-jug <j>)}

sp {water-jug*apply*empty
 (state <s> ^name water-jug
 ^operator <o>)
 (<o> ^name empty
 ^empty-jug <j>)
 (<j> ^contents <c>)
 -->
 (<j> ^contents 0
 ^contents <c> -)}

Application
If the empty operator is selected for a jug,
then change the contents of that jug to 0.

45

What you don’t do in Soar
1.  Must explicitly add and remove structures

•  No replace command

2.  Cannot match variables in actions
3.  Can’t do math in conditions

•  Conditions can only test existence or absence of WME’s
•  Equality or inequality of identifiers and constants

•  Simple inequality of numbers (>, <, >=, <=, <>)

4.  Only simple calculations in actions
•  Allow simple math
•  Can do call outs (exec) to other languages/systems

•  Not encouraged

5.  Complex calculations should be done via I/O
•  External computational aids (calculators, …)

46

Goal Detection

If there is a jug with volume three and contents one,
then write that the problem has been solved and halt.

sp {water-jug*detect*goal*achieved
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> ^volume 3
 ^contents 1)
-->
 (write (crlf) |The problem has been solved.|)
 (halt)}

47

0,0

5,0 0,3

5,3 2,3

Fill
Empty
5 to 3
3 to 5

3,0

2,0 3,3

5,1 0,2

0,1

1,0

5,2

4,3

4,0 1,3

Water Jug Problem Space

48

Simple Control Knowledge
Rules that influence operator selection using preferences

sp {water-jug*select*empty*worst
 (state <s> ^name water-jug
 ^operator <o> +)
 (<o> ^name empty)
-->
 (<s> ^operator <o> <)}

sp {water-jug*select*empty*low
 (state <s> ^name water-jug
 ^operator <o> +)
 (<o> ^name empty)
-->
 (<s> ^operator <o> = 30)}

49

Summary of Preferences

Acceptable: <o1> +

Reject: <o1> -

Better: <o1> > <o2>

Worse: <o1> < <o2>

Best: <o1> >

Worst: <o1> <

Indifferent: <o1> = <o2>

Indifferent: <o1> =

Indifferent: <o1> = 0-100

50

Maintain History of Last Operator
•  What if want to avoid empty jug just filled?
•  How do it? As part of operator application!
•  If an operator is selected, then record the type of operator.
•  If an operator is selected that differs from the recorded operator,

remove the recorded operator.

If an operator is selected
and its name is different than
last-operator,
remove last-operator

sp {water-jug*remove*last-operator
 (state <s> ^name water-jug
 ^last-operator <name>
 ^operator <o>)
 (<o> ^name <> <name>)
-->
 (<s> ^last-operator <name> -)}

If an operator is selected
record its name in last-operator

sp {water-jug*record*operator
 (state <s> ^name water-jug
 ^operator.name <name>)
-->
 (<s> ^last-operator <name>)}

New syntax!

51

Control Knowledge
If just applied fill, don’t apply empty
sp {water-jug*select*fill*empty*worst
 (state <s> ^name water-jug
 ^last-operator fill
 ^operator <o> +)
 (<o> ^name empty)
-->
 (<s> ^operator <o> <)}

If just applied empty, don’t apply fill
sp {water-jug*select*empty*fill*worst
 (state <s> ^name water-jug
 ^last-operator empty
 ^operator <o> +)
 (<o> ^name fill)
-->
 (<s> ^operator <o> <)}

52

Production
Memory

Working
Memory

Soar 103: Eaters

East

South
North

Propose
Operator

Compare
Operators

North > East
South > East

North = South

Apply
Operator Output Input Select

Operator

If cell in direction <d>
is not a wall,
-->
propose operator
move <d>

If operator <o1> will move to a
bonus food and operator <o2>
will move to a normal food,
-->
operator <o1> > <o2>

If an operator is
selected to move <d>
-->
create output
move-direction <d>

Input Propose
Operator

Compare
Operators

Select
Operator

Apply
Operator Output

If operator <o1> will move to a
empty cell
-->
operator <o1> <

North > East
South <

move-
direction

North

53

Initial Working Memory

^type

^io

superstate

state

nil

^input-link

^output-link

S1! I1!

I2!

I3!

S1 ^superstate nil
S1 ̂ io I1
S1 ^type state
I1 ^output-link I2
I1 ^input-l ink I3
(S1 ^ io I1 ^superstate nil ^type state)
(I1 ^input-link I3 ^output-link I2)

54

my-location

input-link

east east east east

east east east east

east east east east

east east east east

east east east east

west west west west

west west west west

west west west west

west west west west

west west west west

north north north north north

north

north north north north north

north north north north

north north north north north

south south south south south

south south south south south

south south south south south

south south south south south

eater wall empty bonusfood normalfood

content

wall

wall

wall

wall

empty

empty

normalfood

normalfood normalfood

normalfood

normalfood

normalfood

normalfood

normalfood

normalfood

normalfood

Cell for eater’s current location
Neighboring cells

bonusfood

bonusfood

bonusfood

bonusfood

55

Move to Food
Propose*move
If there is normalfood or bonusfood in an adjacent cell,
propose move in the direction of that cell
and indicate that this operator can be selected randomly.

56

Initial Move Proposals

sp {propose*move*normalfood
 (state <s> ^io.input-link.my-location.<dir>.content normalfood)
-->
 (< s> ^operator <o> + =)
 (< o> ^name move
 ^ direction <dir>)}

sp {propose*move*normalfood
 (state <s> ^io <io>)
 (< io> ^input-link <input-link>)
 (< input-link> ^my-location <my-loc>)
 (< my-loc> ^<dir> <cell>)
 (< cell> ^content normalfood)
-->
 (< s> ^operator <o> +)
 (< s> ^operator <o> =)
 (< o> ^name move
 ^ direction <dir>)}

57

Short Cut: << >>

sp {propose*move
 (state <s> ^io.input - link.my - location.<dir>.content
 << normalfood bonusfood >>)
-- >
 (<s> ^operator <o> + =)
 (<o> ^name move
 ^direction <dir>)}

58

General Move Operator

sp {propose*move
 (state <s> ^ io.input-link.my-location.< dir>.content

{ <content> << empty normalfood bonusfood eater >> })
-->
 (< s> ^operator <o> + =)
 (< o> ^name move
 ^ direction < dir>
 ^ content <content>)}

Propose*move:
If there is normalfood, bonusfood, eater, or empty in an adjacent cell,
propose move in the direction of that cell, with the cell’s content,
and indicate that this operator can be selected randomly.

sp {propose*move
 (state <s> ^io.input-link.my-location.<dir>.content

{ <content> <> wall })
-->
 (< s> ^operator <o> + =)
 (< o> ^name move
 ^ direction <dir>
 ^ content <content>)}

59

Move apply

sp { apply*move
 (state <s> ^ io.output-link < out>
 ^ operator <o>)
 (< o> ^name move
 ^ direction < dir>)
-->
 (< out> ^ move.direction < dir>)}

sp { apply*move*remove-move
 (state <s> ^ io.output-link < out>
 ^ operator.name move)
 (< out> ^move <move>)
 (< move> ^status complete)
-->
 (< out> ^move <move> -)}

Apply*move
If the move operator for a direction is selected,
generate an output command to move in that direction.

Apply*move*remove-move:
If the move operator is selected,
and there is a completed move command on the output link,
then remove that command.

60

Move Selection

sp {select*move*prefer*bonusfood
 (state <s> ^operator <o1> +)
 (< o1> ^name move
 ^ content bonusfood
-->
 (< s> ^operator <o1> >)}

sp {select*move*food-better-than-empty-eater
 (state <s> ^operator <o1> +
 ^ operator <o2> +)
 (< o1> ^name move
 ^ content << bonusfood normalfood >>)
 (< o2> ^name move
 ^ content << empty eater >>)
-->
 (< s> ^operator <o1> > <o2>)}

61

Jump

sp {propose*jump
 (state <s> ^io.input - link.my - location.<dir>.<dir>.content

<> wall)
-- >
 (<s> ^operator <o> + =)
 (<o> ^name jump

 ^direction <dir>)}

•  Eaters allows a jump action – move two spaces in a
single direction, jumping over a cell, but costing 5 points.

•  What would be a proposal for that?

•  How should we write control knowledge to select
between moving and jumping to different objects?

62

Jump/Move Selection

sp { init*elaborate*name-content-value
 (state <s> ^type state)
-->
 (< s> ^name-content-value <c1> <c2> <c3> <c4>
 <c5> <c6> <c7> <c8>)
 (< c1> ^name move ^content empty ^value 0)
 (< c2> ^name move ^content eater ^value 0)
 (< c3> ^name move ^content normalfood ^value 5)
 (< c4> ^name move ^content bonusfood ^value 10)
 (< c5> ^name jump ^content empty ^value -5)
 (< c6> ^name jump ^content eater ^value -5)
 (< c7> ^name jump ^content normalfood ^value 0)
 (< c8> ^name jump ^content bonusfood ^value 5)}

63

Jump/Move Selection

sp {elaborate*operator*value
 (state <s> ^operator <o> +
 ^ name-content-value <ccv>)
 (< o> ^name <name> ^content <content>)
 (< ccv> ^name <name> ^content <content> ^value <value>)
-->
 (< o> ^value <value>)}

sp {select*compare*best*value
 (state <s> ^operator <o1> +
 ^operator <o2> +)
 (<o1> ^value <v>)
 (<o2> ^value < <v>)
-- >
 (<s> ^operator <o1> > <o2>)}

64

TankSoar

Red Tank’s
Shield

Borders
(stone)

Walls
(trees)

Health
charger

Missile
pack

Blue tank
(Ouch!)

Energy
charger

Green
tank’s radar

65

TankSoar Scheduler
•  Each tank runs until it has output

•  Possibly multiple decisions

Tank1
output

Tank2
output

Tank3
output

Simulator:
Perform actions
for all tanks and

update all entities.

66

Basic Operators for Wandering Tank
•  If not blocked, move forward:

•  ^io.input-link.blocked.forward no
•  ^move.direction forward

•  If blocked, rotate to clear direction and turn on radar to power 13
•  ^io.input-link.blocked.forward yes
•  ^rotate.direction <direction>
•  ^radar-power.setting 13

•  If radar is on and there are no objects, turn off radar
•  Can be an elaboration, not a separate operator
•  ^radar.switch off

67

TankSoar Hierarchy
The Soar Tutorial’s full Hierarchy for TankSoar:

68

Soar 104: Substates

Propose
Operator

Compare
Operators

Apply
Operator Output Input Select

Operator Input Propose
Operator

Compare
Operators

Select
Operator

Move

Wander

If enemy not
sensed, then wander

Turn

Apply
Operator Output

69

Soar 104: Substates

Propose
Operator

Compare
Operators

Apply
Operator Output Input Select

Operator

Attack

If enemy is sensed,
then attack

Shoot

70

Impasses and Subgoals/Substates
•  Problem:

•  What to do when inconsistent of incomplete knowledge?

•  Approach:
•  Detect impasses in decision procedure: tie, conflict, no-change
•  Create substate with augmentations that define impasse

•  Superstate
•  Impasse – no-change, tie, conflict, …
•  Item – tied or conflicted operators
•  …

•  Impasse resolved when decision can be made superstate
item

impasse

71

Implications:

•  Substate is really meta-state that allows system to reflect
•  Substate = goal to resolve impasse

•  Generate operator
•  Select operator (deliberate control)
•  Apply operator (task decomposition)

•  All basic problem solving functions open to reflection
•  Operator creation, selection, application, state elaboration

•  Substate is where knowledge to resolve impasse can be found
•  Hierarchy of substate/subgoals arise through recursive impasses

72

TacAir-Soar Task Decomposition

Achieve
Proximity

Employ
Weapons Search Execute

Tactic Scram

Get Missile
LAR

Select
Missile

Get Steering
Circle

Sort
Group

Launch
Missile

Lock Radar Lock IR Fire-Missile Wait-for
Missile-Clear

If intercepting an enemy and
the enemy is within range
ROE are met then
propose employ-weapons

Employ
Weapons

If employing-weapons and
missile has been selected and
the enemy is in the steering
circle and LAR has been
achieved,
then propose launch-missile Launch

Missile
If launching a missile and
it is an IR missile and
there is currently no IR lock
then propose lock-IR Lock IR

Execute
Mission

Fly-route Ground
Attack Fly-Wing Intercept

If instructed to intercept an
enemy then
propose intercept

Intercept

>250 goals, >600 operators, >8000 rules

73

Substate Results
•  Problem

•  What are the results of substates/subgoals?
•  Don’t want to have programmer determine via special syntax
•  Results should be side-effect of processing

•  Approach
•  Results determined by structure of working memory
•  Structure is maintained based on connectivity to state stack
•  Result is

•  Structure connected to superstate but created by rule that tests substate structure
•  Structure created in substate that becomes connected to superstate

•  Remove everything that isn’t a result with impasse resolved

•  Substate Approach Implications
•  Results do not always resolve impasses
•  One result can cause large substate structure to become result
•  Superstate cannot be augmented with substate – substate would be result

74

Result Examples
superstate

substate

superstate

substate

new result

tested by rule

superstate

substate new results

superstate
post-impasse

75

Persistence of Results
•  Problem:

•  What should be the persistence of results?
•  Based on persistence of structure in subgoal?
•  Could have different persistence before and after

chunking
•  Operator in subgoal could create elaboration of superstate

•  How maintain i-support after substate removed?

•  Approach:
•  Build justification that captures processing
•  Analyze justification

•  Elaborate, propose, select, apply
•  Assign o/i-support

•  Maintain justification for i-support until result removed

76

Justification Example

substate

superstate

superstate

substate

superstate

substate

superstate

substate

result

77

Tie Subgoals and Chunking

East

South
North

Propose
Operator

Compare
Operators

Apply
Operator Output Input Select

Operator
Input Propose

Operator
Compare
Operators

Select
Operator

Tie
Impasse

Evaluate-operator
(North)

North = 10

Evaluate-operator
(South)

Evaluate-operator
(East)

= 10 = 10 = 5

Chunking creates
 rule that applies
evaluate-operator

North > East
South > East
North = South

= 10

Chunking creates
 rules that create preferences

based on what was tested

78

Learning/Chunking
•  Problem:

•  Subgoals “discover” knowledge to resolve impasses but it is lost
after each problem solving episode

•  Approach
•  Automatically build rules that summarize processing

•  Variablize justifications = chunks
•  Variablizes identifiers – not constants: loses >, <, … tests between constants
•  Conditions include those tests required to produce result = implicit generalization

•  Chunks are built as soon as a result is produced
•  Immediate transfer is possible

•  One chunk for each result, where a result consists of connected
WMEs that become results at the same time

•  Different results can lead to very different conditions
•  Improves generality of chunks

•  Only chunk over high-confidence decisions

79

Chunk Example

superstate

substate

result

80

Chunking Analysis
•  Converts deliberate reasoning/planning to reaction
•  Generality of learning based on generality of reasoning

•  Leads to many different types learning
•  If reasoning is inductive, so is learning

•  Soar only learns what it thinks about
•  All learning is impasse driven

•  Learning arises from a lack of knowledge

81

Soar 9 Structural Diagram

Symbolic Long-Term Memories

Symbolic Working Memory

Body

Procedural

D
ec

is
io

n
Pr

oc
ed

ur
e

Chunking

A
pp

ra
is

al
s

Reinforcement
Learning

Semantic

Perception Action

Episodic

Episodic
Learning

Visual LT Memory
Mental Imagery

Perceptual STM

82

Soar Community
•  Soar Website

•  http://sitemaker.umich.edu/soar

•  Soar-group
•  http://lists.sourceforge.net/lists/listinfo/soar-group
•  Low traffic

83

Persistence of Substate Structures:
Problem

•  O-supported structure in subgoals can become
inconsistent
•  Future behavior is no longer reactive to changes in the context

•  Non-reentrant – results would be different if rentered subgoal
•  Chunks have conditions that can never match

•  Test mutually exclusive values of same attribute
•  Non-contemporaneous

superstate

substate

chunk

result

-->

84

Analysis
•  Whenever the substate WMEs cannot be recreated from

superstate WMEs using existing rules.
•  Occurs from changes to input and returning results.
•  Only a problem for o-supported structures and their

entailments
•  Not a problem for i-supported structures

85

Possible Approach
•  Remove any substate WME that becomes inconsistent

•  One detail of Soar makes this very nasty
•  WMEs don’t “blip” when there is a change in i-support
•  If an i-supported WME loses support, but at exact same time, same WME is

created with new i-support, WME doesn’t changes

(<s> ^sensor-a < 20) --> (<s> ^enemy near)

•  Can’t maintain derivation information with every WME
•  Because it can change

•  Must dynamically compute derivation information

•  Very expensive to maintain and compute

86

Approach
•  A substate is regenerated whenever higher state

WMEs become inconsistent with substate’s internal
processing

•  Regenerated = all substate structure removed from
WM and new substate created.

•  Each substate maintains a goal dependency set (GDS)
•  All superstate WMEs tested in creating o-supported WMEs

in substate

•  If anything changes in GDS, substate is regenerated.

87

GDS Example

A B

superstate

substate

C D E

= i-support

= o-support

2

3

4 5 1

GDS= [A,D] GDS= [] GDS= [A,B,C,D] GDS= [A,B,C,D]

88

Implications
•  Only an issue for o-supported structures in substates.
•  Can’t create o-supported structures based on changing

sensors.
•  Can’t create counters of external events in substates

•  O-supported structures in substates are steps in that
problem space.
•  Look-ahead search

•  Can avoid regeneration by maintaining “fragile” o-
support structure on top-state.

