How to Build a Soar Agent

John Laird

John L. Tishman Professor of Engineering
Division of Computer Science and Engineering
University of Michigan

Overview

- Describe my approach to building Soar agents
- Use the clean-room bot as example
- Will make source code available in week or two
 - Needs to be cleaned up

Goals of Agent Design

- Agent interacts with environment in real time.
- Focus on immediate goals.
 - Start with bot that has one goal
 - Generalize to one that can have multiple missions
- Agent has potential to use all of Soar capabilities.
- Start with storage in working memory

Clean-room Agent

- Explores household looking for blocks
 - Builds up map as it explores
 - Map consists of rooms and doorways connected in a graph structure
- Takes blocks to storage room
 - Searches for shortest path.
- Chases mice it sees while it is cleaning house

Overall Design Ideas

- 1. Use operator no-changes to create immediate task hierarchy.
- 2. Maintain mission structure in wmem of smem as linked list (or tree).
- 3. Movement is deep in operator hierarchy.
- 4. Store intermediate progress on top-state (GDS!)
- Rely on reinforcement learning to learn control knowledge when possible.
- 6. Use selection space for planning.
- 7. Imagery is not yet ready for prime time.

Overall Structure of Agent

Trace

```
1: 0: 03 (init-robot)
  2: ==>S: S6 (operator no-change)
  3: 0: 05 (record-area)
  4: 0: 02 (get-block)
  5: ==>S: S8 (operator no-change)
  6:
        O: 07 (goto-not-clean-area)
  7:
        ==>S: S10 (operator no-change)
  8:
           0: 09 (qo-to)
  9:
           ==>S: S12 (operator no-change)
 10:
              O: 010 (set-waypoint)
Add waypoint: 14
Rotating to waypoint at heading 13
 11:
              O: 012 (turn-to-waypoint)
 12:
              ==>S: S15 (operator no-change)
 13:
                 ==>S: S17 (state no-change)
 14:
                    0: 013 (wait)
 16:
                    O: 014 (wait)
 59:
              O: 058 (move-forward)
 60:
             ==>S: S20 (operator no-change)
 61:
                 ==>S: S22 (state no-change)
Rotating to waypoint at heading 18
338:
              O: 0336 (turn-to-waypoint)
339:
              ==>S: S25 (operator no-change)
340:
                 ==>S: S27 (state no-change)
```

Init-task

- Define task parameters
- If mission initializes mission

Record-x

- Have top-state operator to record important perceptual features: objects, rooms, ...
 - Store persistent information in wmem or smem.
 - Rely on episodic memory for object locations.
- Preferred over task operators
 - Blow away substate stack to record information
 - Avoids issues with chunking
 - Substate stack regenerates

Parameters

Maintain run-time parameters in working memory, created by an elaboration:

```
sp {robot*elaborate*state
   (state <s> ^name robot
              ^superstate nil)
   (<s> ^parameters )
   ( ^pickup-range 1.0
                           # range in meters
            ^collision-range 1.0
            ^low-linear-velocity .3
            ^medium-linear-velocity .6
            ^high-linear-velocity .7
            ^low-angular-velocity 5
            ^medium-angular-velocity 40
            ^high-angular-velocity 60
            ^waypoint-tolerance 0.3
            ^message-update-time 3
            ^rotation-tolerance 8
                                      # degrees the agent's yaw can be off
            ^range-tolerance 1
                                      # distance at which arc is considered blocked
            ^progress-update-time 20 # how often progress is updated
            ^max-angular-distance 10
            ^min-angular-distance -10
            ^areas-held-in wm
            ^objects-held-in wm
            ^look-ahead-planning yes
            ^search-control-go-to-gateway yes
            ^default-storage-area-id 9
            ^increased-angular-tolerance-range .5
            ^increased-angular-tolerance-multiplier ) }
```

Use of Elaborations

- Compute qualitative movement features:
 - yaw-aligned
 - is agent heading in right direction given tolerances?
 - destination-in-range
 - in range of destination?
- Test for absence of incorrect values
 - avoids blinking

Follow the Rules

- Don't mix PSCM functions in a single rule
- Don't fight the GDS
 - it is there to keep you honest!
- Get to know the default rules
 - planning (and chunking) can be fun!
- Don't get too clever (keep it simple ...)
 - Don't try to avoid operators, substates, etc.
- Avoid maintaining large sets in working memory