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Research	
  Question	
  
  In a constrained cognitive architecture, does  

  describing the world using symbolic, object-oriented representations,  
  hierarchical task decomposition and learning 
  including internal goals and rewards in the design of the agent 

result  in better reinforcement learning in a complex task?  
  higher average reward 
  faster convergence 
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Outline	
  
  Domain 
  Challenges 
  Reinforcement Learning 
  Propositional Agent 
  Symbolic, Object-Oriented Representation 
  Hierarchical Reinforcement Learning 
  Design 
  Nuggets and Coal 



Domain	
  
  Infinite Mario  

  Side scrolling game 
  Gain points by collecting coins, killing 

monsters 

  Domain developed in RL-Glue 
  Reinforcement Learning Competition 

2009 

  State Observations 
  Visual Scene – 16 x 22 tiles, 13 

different types 
  Episode is of arbitrary length 

  Monsters – can be of different types, 
speed etc 

  Actions 
  Typical  Nintendo  Controls 

  Step right, left or stay 
  Jump 
  Speed toggle 

  Reward 
  +100 on reaching the finish line 
  +1.00 for collecting coin, killing monster 
  -10.00 for termination of the game 
  -0.01 every step 

  Sample Agent 
  Heuristic policy 
  Remembers sequence of actions 4 



Domain	
  

  Learning should generalize across 
different instances, levels of the game. 
  Representations that are specific to a 

particular instance of game cannot be used. 

  Abundant information 
  Lot of extracted, derived data 
  Learn what is important from instructor 
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  Learning computationally expensive 
  Episode with 300 steps  has ~5000 tiles of 13 

different types 
  Use ‘good’ state representations 

  Partial Observations 
  Only a part of the game instance is visible at a 

time. 
  Assume  that only local conditions matter, 

MDP assumption 

  Large, continuous, growing state 
space 
  Position, speed of objects (monster) are real 

numbers 
  Many different objects 
  Value function augmentation, good state 

representation 

  Highly dynamic environment 
  High degree of relative movement 
  Despite available input data, predicting 

behavior is hard 
  Learn from experience 



Reinforcement	
  Learning	
  

  Reinforcement Learning 
  Acquire domain knowledge from 

experience, online learning 

  Formally, the basic reinforcement learning 
model 
   a set of environment states S; 
   a set of actions A; and 
   a set of scalar "rewards" R. 

  Based on the interactions the RL agent 
develops a policy 
  Maximizes the reward earned 

6 

Agent 

Environment 

action 
at  

rt+1 

st+1	
  	
  

state 
st  

reward 
rt  



Propositional	
  Agent	
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  Enormous state space 
  Visual Scene – 16*22 

(352) tiles, of 13 different 
kinds = 13^352 states 

  All states do not 
really occur in the 
game 

  Use very local information 
  5*3 tiles around Mario 
  Include monsters that are 

within this range 
  Learning is hard 

  Huge state-space 
  Reward achieved after a 

long sequence of steps 
  Not clear how to provide 

background knowledge to aid 
learning 
  Extremely difficult, maybe 

impossible 



Symbolic, Object-Oriented Representation 
(agents 2, 3, 4) 
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winged no 
Position (3.5,1)  
type  Goomba 

winged no 
position (8,3) 
type  Mario position

(12,4) 
Position
(13,4) 

  Extract regular objects from inputs 
  Monsters, coins, question-blocks, platforms, pits 

  Associate object with its features 
  speed, type, position 

  Derive features 
  Relative distances between objects 
  Relative distances of objects from Mario 
  attributes like ‘isreachable’, ‘isthreat’ if a object 

is close enough and should affect agents 
behavior 

  Describe state 
  Provide background knowledge 

  If	
  attribute	
  ‘isreachable’	
  for	
  a	
  platform	
  is	
  set,	
  and	
  
there	
  is	
  a	
  coin	
  on	
  if,	
  then	
  set	
  attribute	
  ‘isreachable’	
  
for	
  the	
  coin.	
  

distx -4.5 
disty -2 
isthreat no 

distx  4 
disty  1 
isreachable yes 

state <s> ^name mario-soar 
                    ^monster <m1> 
                    ^coin <c1> 
                    ^coin <c2>  
                    ^coin <c3> 
                    ^coin <c4> 
                    ^coin <c5> 
                    ^coin <c6> 
                    ^question-block <q1> 
                    ^question-block <q2> 

<m1> ^type Goomba 
              ^winged no 
               ^distx -4.5 
               ^disty -2 
                ^isthreat no  

<c1>   ^distx  4 
              ^disty  1 
               ^isreachable yes  



Action	
  (Operator)	
  Hierarchy	
  

  GOMS analysis of Mario1 

  Predictive of the behavior of human expert 
  Introduced functional-level operators and 

Keystroke-level 
  Divides the task into smaller tasks 

  Two kinds of actions 
  FLOs 

  Functional-level Operators (actions) 
  Abstract macro-actions 
  Sequence of atomic actions 
  With a specific functional goal 

  KLOs 
  Keystroke –level Operators (actions) 
  Atomic actions 

  Move, jump, speed toggle 
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move-right grab-coin search-
block 

tackle-
monster 

move 
right/left/stay 

jump 
yes/no 

Speed 
High/low 

  Application of Actions 

  Object-Oriented 
  FLOs described for specific objects 
  tackle-monster for monsters 

  Control 
  Derived attributes used to control the 

progression  
  ‘isthreat’ , ‘isreachable’ 

[1] B.E. John and A.H. Vera, “A GOMS analysis of a graphic machine-paced, highly interactive task,” Proceedings of the SIGCHI 
conference on Human factors in computing systems, 1992, pp. 251–258. 



Progression	
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move-right 

grab-coin 

search-
block 

tackle-
monster 

state: mario-soar 
available 
behavior:  
move-right  
state: move-right 
available actions: 
 atomic-actions  

state: mario-soar 
available behavior:  
move-right,  
tackle-monster(m1)  

state: tackle-monster 
available behavior:  
Atomic-actions  

m1  isthreat  yes 

m1 



Agent	
  2:	
  Learning	
  at	
  KLO	
  level	
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  Can the agent learn behaviors like grabbing a coin, killing a monster? 
  State 

  FLO-level: presence, absence of flag attributes like ‘isthreat’ or ‘isreachable’ 

  KLO-level: features extracted/derived from input 

  Actions 
  FLOs : tackle-monster, grab-coin, search-question etc 

  Symbolic preferences used to break a tie 

  KLOs:  move{right, left, stay}  x  jump{yes,no}  x speed toggle {on,off} 
  Learning 

  Given symbolic preferences at the FLO level 
  tackle-monster > move-right 

  Learn the most rewarding sequence of KLOs 
  Reward 

  As provided by the environment , at KLO level 

monster <m1> ^isthreat true coin <c1> ^isreachable true 

coin <c1> ^distx <x> 
                      ^disty <y> 

monster <m1> ^type Goomba 
      ^winged no  
      ^distx <x>  
       ^disty <y> 
        …  



Results	
  -­‐	
  	
  Agent	
  2	
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  Averaged over 10 trials of 
2000 runs each 

  Learning algorithm - SARSA 
  Learning rate – 0.3 
  Discount rate – 0.9 
  Exploration policy – Epsilon-

greedy 
  Epsilon – 0.01 
  Reduction-rate – 0.99 
  Policy converges at ~1400 

episodes  
  Average reward earned by 

converged policy (last 100 
runs)=145.97 

  Agent performs better than the 
sample agent. 



Agent	
  3:	
  Hierarchical	
  Learning	
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  Can the agent learn preferences between objects as it learns behaviors? 
  Similar to MAXQ-01 

  State 
  FLO-level: presence, absence of flag attributes like ‘isthreat’ or ‘isreachable’ 

  KLO-level: features extracted/derived from input 

  Actions 
  FLOs : tackle-monster, grab-coin, search-question etc 
  KLOs:  move{right, left, stay}  x  jump{yes,no}  x speed toggle {on,off} 

  Learning 
  Learn numeric preferences at the FLO level 
  Learn the most rewarding sequence of KLOs 

  Reward 
  As provided by the environment , at both KLO and FLO level 

coin <c1> ^distx <x> 
                      ^disty <y> 

monster <m1> ^type Goomba 
      ^winged no  
      ^distx <x>  
       ^disty <y> 
        …  

monster <m1> ^isthreat true 
                                ^distx <x> 
                                ^disty <y> 

coin <c1> ^isreachable true 
                      ^distx <x>  
                      ^disty <y> 

[1] T.G. Dietterich, “Hierarchical reinforcement learning with the MAXQ value function decomposition,” Journal of Artificial Intelligence Research,  
vol. 13, 2000, pp. 227–303. 



Results	
  –	
  Agent	
  3	
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  Averaged over 10 trials of 
2000 runs each 

  Learning algorithm - SARSA 
  Learning rate – 0.3 
  Discount rate – 0.9 
  Exploration policy – Epsilon-

greedy 
  Epsilon – 0.01 
  Reduction-rate – 0.99 
  Agent converges to a policy at 

400 episodes 
  Average reward earned by 

converged policy (last 100 
runs)=144.68 

  Agent converges faster than 
Agent 2 (1400 runs) 

  Learns a more specific policy 
which might be better 



Agent	
  4:	
  Reward	
  Shaping	
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  Can the performance of the agent be improved by introducing internal rewards and 
goals in the agent design? 
  MAXQ-Q1 

  Building in intrinsic goals and rewards2 

  State,  Action, Learning 
  As in Agent 3 

  Reward 
  Agent 3 uses the reward as provided by the environment 

  Agent may get rewarded even if it does not execute the selected FLO correctly,  
  grabbing a coin while tackle-monster is selected 

  Reward the agent at the KLO level only when the goal is achieved 
  +1.00 for correctly executing the selected FlO, 

   killing/avoiding a monster when tackle-monster is selected 
  -0.01 for every step 

  Reward at the FLO level is computed from the reward provided by the environment 

[1] T.G. Dietterich, “Hierarchical reinforcement learning with the MAXQ value function decomposition,” Journal of Artificial Intelligence Research,  
vol. 13, 2000, pp. 227–303. 
[2] S. Singh, R.L. Lewis, A.G. Barto, J. Sorg, and A. Helou, “On Separating Agent Designer Goals from Agent Goals: Breaking the Preferences–
Parameters Confound,” submitted, 2010. 



Results	
  –	
  Agent	
  4 
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  Averaged over 10 trials of 
2000 runs each 

  Learning algorithm - SARSA 
  Learning rate – 0.3 
  Discount rate – 0.9 
  Exploration policy – Epsilon-

greedy 
  Epsilon – 0.01 
  Reduction-rate – 0.99 
  Agent converges to a policy at 

200 episodes 
  Average reward earned by 

converged policy (last 100 
runs)=145.98 

  Average standard deviation 
(last 100 runs) = 2.0083 

  Converges faster than Agent 3 
(400 runs), correct intrinsic 
reward 



Nuggets and Coal 
  Detailed analytical study of the domain 

  Optimality 
  Good comparison metric 
  Parameter sweeps 
  Transfer Learning 

  Learning at one level should help in 
playing a higher level 

  Hierarchical division of the task makes 
operating in the environment easier 

  Hierarchical learning allows the agent to 
learn policies faster 

  Demonstrated that object-oriented representations 
provide structure to state description 

  Symbolic representations allow for easy encoding of 
the background knowledge 

  Encoding intrinsic rewards in an agent helps 
it learn faster. 


