Reinforcement Learning in Infinite Mario

Shiwali Mohan and John E. Laird

shiwali@umich.edu

laird@umich.edu

The Soar Group at University of Michigan

Research Question

- In a constrained cognitive architecture, does
 - describing the world using symbolic, object-oriented representations,
 - hierarchical task decomposition and learning
 - including internal goals and rewards in the design of the agent

result in better reinforcement learning in a complex task?

- higher average reward
- faster convergence

Outline

- Domain
- Challenges
- Reinforcement Learning
- Propositional Agent
- Symbolic, Object-Oriented Representation
- Hierarchical Reinforcement Learning
- Design
- Nuggets and Coal

Domain

Infinite Mario

- Side scrolling game
- Gain points by collecting coins, killing monsters

Domain developed in RL-Glue

 Reinforcement Learning Competition 2009

State Observations

- Visual Scene 16 x 22 tiles, 13 different types
 - Episode is of arbitrary length
- Monsters can be of different types, speed etc

Actions

- Typical Nintendo Controls
 - Step right, left or stay
 - Jump
 - Speed toggle

Reward

- +100 on reaching the finish line
- +1.00 for collecting coin, killing monster
- -10.00 for termination of the game
- -0.01 every step

Sample Agent

- Heuristic policy
- Remembers sequence of actions

Domain

- Learning computationally expensive
 - Episode with 300 steps has ~5000 tiles of 13 different types
 - Use 'good' state representations
- Partial Observations
 - Only a part of the game instance is visible at a time.
 - Assume that only local conditions matter, MDP assumption
- Large, continuous, growing state space
 - Position, speed of objects (monster) are real numbers
 - Many different objects
 - Value function augmentation, good state representation
- Highly dynamic environment
 - High degree of relative movement
 - Despite available input data, predicting behavior is hard
 - Learn from experience

- Learning should generalize across different instances, levels of the game.
 - Representations that are specific to a particular instance of game cannot be used.
- Abundant information
 - Lot of extracted, derived data
 - Learn what is important from instructor

Reinforcement Learning

- Reinforcement Learning
 - Acquire domain knowledge from experience, online learning
- Formally, the basic reinforcement learning model
 - a set of environment states S;
 - a set of actions A; and
 - a set of scalar "rewards" R.
- Based on the interactions the RL agent develops a policy
 - Maximizes the reward earned

Propositional Agent

- Enormous state space
 - Visual Scene 16*22 (352) tiles, of 13 different kinds = 13^352 states
 - All states do not really occur in the game
- Use very local information
 - 5*3 tiles around Mario
 - Include monsters that are within this range
- Learning is hard
 - Huge state-space
 - Reward achieved after a long sequence of steps
- Not clear how to provide background knowledge to aid learning
 - Extremely difficult, maybe impossible

Symbolic, Object-Oriented Representation

(agents 2, 3, 4)

- Extract regular objects from inputs
 - Monsters, coins, question-blocks, platforms, pits
- Associate object with its features
 - speed, type, position
- Derive features
 - Relative distances between objects
 - Relative distances of objects from Mario
 - attributes like 'isreachable', 'isthreat' if a object is close enough and should affect agents behavior
- Describe state
- Provide background knowledge
 - If attribute 'isreachable' for a platform is set, and there is a coin on if, then set attribute 'isreachable' for the coin.

Action (Operator) Hierarchy

GOMS analysis of Mario¹

- Predictive of the behavior of human expert
- Introduced functional-level operators and Keystroke-level
- Divides the task into smaller tasks

Two kinds of actions

- FLOs
 - Functional-level Operators (actions)
 - Abstract macro-actions
 - Sequence of atomic actions
 - With a specific functional goal

KLOs

- Keystroke –level Operators (actions)
- Atomic actions
- Move, jump, speed toggle

Application of Actions

- Object-Oriented
 - FLOs described for specific objects
 - tackle-monster for monsters
- Control
 - Derived attributes used to control the progression
 - 'isthreat', 'isreachable'

[1] B.E. John and A.H. Vera, "A GOMS analysis of a graphic machine-paced, highly interactive task," Proceedings of the SIGCHI conference on Human factors in computing systems, 1992, pp. 251–258.

Progression

Agent 2: Learning at KLO level

- Can the agent learn behaviors like grabbing a coin, killing a monster?
- State
 - FLO-level: presence, absence of flag attributes like 'isthreat' or 'isreachable'

monster <m1> ^isthreat true

coin <c1> ^isreachable true

KLO-level: features extracted/derived from input

monster <m1> ^type Goomba ^winged no ^distx <x> ^disty <y> ...

Actions

- FLOs: tackle-monster, grab-coin, search-question etc
 - Symbolic preferences used to break a tie
- KLOs: move{right, left, stay} x jump{yes,no} x speed toggle {on,off}
- Learning
 - Given symbolic preferences at the FLO level
 - tackle-monster > move-right
 - Learn the most rewarding sequence of KLOs
- Reward
 - As provided by the environment, at KLO level

Results - Agent 2

- Averaged over 10 trials of 2000 runs each
- Learning algorithm SARSA
- □ Learning rate 0.3
- □ Discount rate 0.9
- Exploration policy Epsilongreedy
- □ Epsilon 0.01
- □ Reduction-rate 0.99
- Policy converges at ~1400 episodes
- Average reward earned by converged policy (last 100 runs)=145.97
- Agent performs better than the sample agent.

Agent 3: Hierarchical Learning

- Can the agent learn preferences between objects as it learns behaviors?
 - Similar to MAXQ-0¹
- State
 - FLO-level: presence, absence of flag attributes like 'isthreat' or 'isreachable'

monster <m1> ^isthreat true ^distx <x> ^disty <y>

coin <c1> ^isreachable true ^distx <x> ^disty <y>

KLO-level: features extracted/derived from input

monster <m1> ^type Goomba ^winged no ^distx <x> ^disty <y> ...

Actions

- FLOs: tackle-monster, grab-coin, search-question etc
- KLOs: move{right, left, stay} x jump{yes,no} x speed toggle {on,off}
- Learning
 - Learn numeric preferences at the FLO level
 - Learn the most rewarding sequence of KLOs
- Reward
 - As provided by the environment, at both KLO and FLO level

Results – Agent 3

- Averaged over 10 trials of 2000 runs each
- Learning algorithm SARSA
- □ Learning rate 0.3
- □ Discount rate 0.9
- Exploration policy Epsilongreedy
- □ Epsilon 0.01
- □ Reduction-rate 0.99
- Agent converges to a policy at 400 episodes
- Average reward earned by converged policy (last 100 runs)=144.68
- Agent converges faster than Agent 2 (1400 runs)
- Learns a more specific policy which might be better

Agent 4: Reward Shaping

- Can the performance of the agent be improved by introducing internal rewards and goals in the agent design?
 - MAXQ-Q¹
 - Building in intrinsic goals and rewards²
- State, Action, Learning
 - As in Agent 3
- Reward
 - Agent 3 uses the reward as provided by the environment
 - Agent may get rewarded even if it does not execute the selected FLO correctly,
 - grabbing a coin while tackle-monster is selected
 - Reward the agent at the KLO level only when the goal is achieved
 - +1.00 for correctly executing the selected FIO,
 - killing/avoiding a monster when tackle-monster is selected
 - -0.01 for every step
 - Reward at the FLO level is computed from the reward provided by the environment

[1] T.G. Dietterich, "Hierarchical reinforcement learning with the MAXQ value function decomposition," Journal of Artificial Intelligence Research, vol. 13, 2000, pp. 227–303.

[2] S. Singh, R.L. Lewis, A.G. Barto, J. Sorg, and A. Helou, "On Separating Agent Designer Goals from Agent Goals: Breaking the Preferences–Parameters Confound," submitted, 2010.

Results – Agent 4

- Averaged over 10 trials of 2000 runs each
- Learning algorithm SARSA
- □ Learning rate 0.3
- □ Discount rate 0.9
- Exploration policy Epsilongreedy
- □ Epsilon 0.01
- □ Reduction-rate 0.99
- Agent converges to a policy at 200 episodes
- Average reward earned by converged policy (last 100 runs)=145.98
- □ Average standard deviation (last 100 runs) = 2.0083
- Converges faster than Agent 3 (400 runs), correct intrinsic reward

Nuggets and Coal

- Hierarchical division of the task makes operating in the environment easier
- Hierarchical learning allows the agent to learn policies faster
- Demonstrated that object-oriented representations provide structure to state description
- Symbolic representations allow for easy encoding of the background knowledge
- Encoding intrinsic rewards in an agent helps it learn faster.

- Detailed analytical study of the domain
 - Optimality
 - Good comparison metric
 - Parameter sweeps
 - Transfer Learning
- Learning at one level should help in playing a higher level