
Reinforcement	
 Learning	
 in	

Infinite	
 Mario	

Shiwali Mohan and John E. Laird
shiwali@umich.edu laird@umich.edu

The Soar Group at University of Michigan

Research	
 Question	

  In a constrained cognitive architecture, does

  describing the world using symbolic, object-oriented representations,
  hierarchical task decomposition and learning
  including internal goals and rewards in the design of the agent

result in better reinforcement learning in a complex task?
  higher average reward
  faster convergence

2

Outline	

  Domain
  Challenges
  Reinforcement Learning
  Propositional Agent
  Symbolic, Object-Oriented Representation
  Hierarchical Reinforcement Learning
  Design
  Nuggets and Coal

Domain	

  Infinite Mario

  Side scrolling game
  Gain points by collecting coins, killing

monsters

  Domain developed in RL-Glue
  Reinforcement Learning Competition

2009

  State Observations
  Visual Scene – 16 x 22 tiles, 13

different types
  Episode is of arbitrary length

  Monsters – can be of different types,
speed etc

  Actions
  Typical Nintendo Controls

  Step right, left or stay
  Jump
  Speed toggle

  Reward
  +100 on reaching the finish line
  +1.00 for collecting coin, killing monster
  -10.00 for termination of the game
  -0.01 every step

  Sample Agent
  Heuristic policy
  Remembers sequence of actions 4

Domain	

  Learning should generalize across
different instances, levels of the game.
  Representations that are specific to a

particular instance of game cannot be used.

  Abundant information
  Lot of extracted, derived data
  Learn what is important from instructor

5

  Learning computationally expensive
  Episode with 300 steps has ~5000 tiles of 13

different types
  Use ‘good’ state representations

  Partial Observations
  Only a part of the game instance is visible at a

time.
  Assume that only local conditions matter,

MDP assumption

  Large, continuous, growing state
space
  Position, speed of objects (monster) are real

numbers
  Many different objects
  Value function augmentation, good state

representation

  Highly dynamic environment
  High degree of relative movement
  Despite available input data, predicting

behavior is hard
  Learn from experience

Reinforcement	
 Learning	

  Reinforcement Learning
  Acquire domain knowledge from

experience, online learning

  Formally, the basic reinforcement learning
model
  a set of environment states S;
  a set of actions A; and
  a set of scalar "rewards" R.

  Based on the interactions the RL agent
develops a policy
  Maximizes the reward earned

6

Agent

Environment

action
at

rt+1

st+1	
 	

state
st

reward
rt

Propositional	
 Agent	

7

  Enormous state space
  Visual Scene – 16*22

(352) tiles, of 13 different
kinds = 13^352 states

  All states do not
really occur in the
game

  Use very local information
  5*3 tiles around Mario
  Include monsters that are

within this range
  Learning is hard

  Huge state-space
  Reward achieved after a

long sequence of steps
  Not clear how to provide

background knowledge to aid
learning
  Extremely difficult, maybe

impossible

Symbolic, Object-Oriented Representation
(agents 2, 3, 4)

8

winged no
Position (3.5,1)
type Goomba

winged no
position (8,3)
type Mario position

(12,4)
Position
(13,4)

  Extract regular objects from inputs
  Monsters, coins, question-blocks, platforms, pits

  Associate object with its features
  speed, type, position

  Derive features
  Relative distances between objects
  Relative distances of objects from Mario
  attributes like ‘isreachable’, ‘isthreat’ if a object

is close enough and should affect agents
behavior

  Describe state
  Provide background knowledge

  If	
 attribute	
 ‘isreachable’	
 for	
 a	
 platform	
 is	
 set,	
 and	

there	
 is	
 a	
 coin	
 on	
 if,	
 then	
 set	
 attribute	
 ‘isreachable’	

for	
 the	
 coin.	

distx -4.5
disty -2
isthreat no

distx 4
disty 1
isreachable yes

state <s> ^name mario-soar
 ^monster <m1>
 ^coin <c1>
 ^coin <c2>
 ^coin <c3>
 ^coin <c4>
 ^coin <c5>
 ^coin <c6>
 ^question-block <q1>
 ^question-block <q2>

<m1> ^type Goomba
 ^winged no
 ^distx -4.5
 ^disty -2
 ^isthreat no

<c1> ^distx 4
 ^disty 1
 ^isreachable yes

Action	
 (Operator)	
 Hierarchy	

  GOMS analysis of Mario1

  Predictive of the behavior of human expert
  Introduced functional-level operators and

Keystroke-level
  Divides the task into smaller tasks

  Two kinds of actions
  FLOs

  Functional-level Operators (actions)
  Abstract macro-actions
  Sequence of atomic actions
  With a specific functional goal

  KLOs
  Keystroke –level Operators (actions)
  Atomic actions

  Move, jump, speed toggle

9

move-right grab-coin search-
block

tackle-
monster

move
right/left/stay

jump
yes/no

Speed
High/low

  Application of Actions

  Object-Oriented
  FLOs described for specific objects
  tackle-monster for monsters

  Control
  Derived attributes used to control the

progression
  ‘isthreat’ , ‘isreachable’

[1] B.E. John and A.H. Vera, “A GOMS analysis of a graphic machine-paced, highly interactive task,” Proceedings of the SIGCHI
conference on Human factors in computing systems, 1992, pp. 251–258.

Progression	

10

move-right

grab-coin

search-
block

tackle-
monster

state: mario-soar
available
behavior:
move-right
state: move-right
available actions:
 atomic-actions

state: mario-soar
available behavior:
move-right,
tackle-monster(m1)

state: tackle-monster
available behavior:
Atomic-actions

m1 isthreat yes

m1

Agent	
 2:	
 Learning	
 at	
 KLO	
 level	

11

  Can the agent learn behaviors like grabbing a coin, killing a monster?
  State

  FLO-level: presence, absence of flag attributes like ‘isthreat’ or ‘isreachable’

  KLO-level: features extracted/derived from input

  Actions
  FLOs : tackle-monster, grab-coin, search-question etc

  Symbolic preferences used to break a tie

  KLOs: move{right, left, stay} x jump{yes,no} x speed toggle {on,off}
  Learning

  Given symbolic preferences at the FLO level
  tackle-monster > move-right

  Learn the most rewarding sequence of KLOs
  Reward

  As provided by the environment , at KLO level

monster <m1> ^isthreat true coin <c1> ^isreachable true

coin <c1> ^distx <x>
 ^disty <y>

monster <m1> ^type Goomba
 ^winged no
 ^distx <x>
 ^disty <y>
 …

Results	
 -­‐	
 	
 Agent	
 2	

12

  Averaged over 10 trials of
2000 runs each

  Learning algorithm - SARSA
  Learning rate – 0.3
  Discount rate – 0.9
  Exploration policy – Epsilon-

greedy
  Epsilon – 0.01
  Reduction-rate – 0.99
  Policy converges at ~1400

episodes
  Average reward earned by

converged policy (last 100
runs)=145.97

  Agent performs better than the
sample agent.

Agent	
 3:	
 Hierarchical	
 Learning	

13

  Can the agent learn preferences between objects as it learns behaviors?
  Similar to MAXQ-01

  State
  FLO-level: presence, absence of flag attributes like ‘isthreat’ or ‘isreachable’

  KLO-level: features extracted/derived from input

  Actions
  FLOs : tackle-monster, grab-coin, search-question etc
  KLOs: move{right, left, stay} x jump{yes,no} x speed toggle {on,off}

  Learning
  Learn numeric preferences at the FLO level
  Learn the most rewarding sequence of KLOs

  Reward
  As provided by the environment , at both KLO and FLO level

coin <c1> ^distx <x>
 ^disty <y>

monster <m1> ^type Goomba
 ^winged no
 ^distx <x>
 ^disty <y>
 …

monster <m1> ^isthreat true
 ^distx <x>
 ^disty <y>

coin <c1> ^isreachable true
 ^distx <x>
 ^disty <y>

[1] T.G. Dietterich, “Hierarchical reinforcement learning with the MAXQ value function decomposition,” Journal of Artificial Intelligence Research,
vol. 13, 2000, pp. 227–303.

Results	
 –	
 Agent	
 3	

14

  Averaged over 10 trials of
2000 runs each

  Learning algorithm - SARSA
  Learning rate – 0.3
  Discount rate – 0.9
  Exploration policy – Epsilon-

greedy
  Epsilon – 0.01
  Reduction-rate – 0.99
  Agent converges to a policy at

400 episodes
  Average reward earned by

converged policy (last 100
runs)=144.68

  Agent converges faster than
Agent 2 (1400 runs)

  Learns a more specific policy
which might be better

Agent	
 4:	
 Reward	
 Shaping	

15

  Can the performance of the agent be improved by introducing internal rewards and
goals in the agent design?
  MAXQ-Q1

  Building in intrinsic goals and rewards2

  State, Action, Learning
  As in Agent 3

  Reward
  Agent 3 uses the reward as provided by the environment

  Agent may get rewarded even if it does not execute the selected FLO correctly,
  grabbing a coin while tackle-monster is selected

  Reward the agent at the KLO level only when the goal is achieved
  +1.00 for correctly executing the selected FlO,

  killing/avoiding a monster when tackle-monster is selected
  -0.01 for every step

  Reward at the FLO level is computed from the reward provided by the environment

[1] T.G. Dietterich, “Hierarchical reinforcement learning with the MAXQ value function decomposition,” Journal of Artificial Intelligence Research,
vol. 13, 2000, pp. 227–303.
[2] S. Singh, R.L. Lewis, A.G. Barto, J. Sorg, and A. Helou, “On Separating Agent Designer Goals from Agent Goals: Breaking the Preferences–
Parameters Confound,” submitted, 2010.

Results	
 –	
 Agent	
 4

16

  Averaged over 10 trials of
2000 runs each

  Learning algorithm - SARSA
  Learning rate – 0.3
  Discount rate – 0.9
  Exploration policy – Epsilon-

greedy
  Epsilon – 0.01
  Reduction-rate – 0.99
  Agent converges to a policy at

200 episodes
  Average reward earned by

converged policy (last 100
runs)=145.98

  Average standard deviation
(last 100 runs) = 2.0083

  Converges faster than Agent 3
(400 runs), correct intrinsic
reward

Nuggets and Coal
  Detailed analytical study of the domain

  Optimality
  Good comparison metric
  Parameter sweeps
  Transfer Learning

  Learning at one level should help in
playing a higher level

  Hierarchical division of the task makes
operating in the environment easier

  Hierarchical learning allows the agent to
learn policies faster

  Demonstrated that object-oriented representations
provide structure to state description

  Symbolic representations allow for easy encoding of
the background knowledge

  Encoding intrinsic rewards in an agent helps
it learn faster.

