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Motivation

What is the source of procedural knowledge?
m Innate

m Experience with the world
o Learning to ride a bicycle

m  Specific Instructions
o Cooking




Motivation

Previously,

m Agent that learn behaviors from
experience
o State-action value function

Further questions

m  Which behavior is associated with
which object?
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o tackle-monster is to be applied when
an object ‘monster’ is nearby ey P

Problem of matching the FLO w0 [T
to corresponding object

m  Which parts of the input are
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Till now knowledge is hand-coded e
m  As rules in the Soar Implementation



Properties of Instruction

Situation specific
m instructions are provided for a specific task in a particular situation

Incremental
m knowledge is elicited incrementally
m it directly addresses points where agent's knowledge is lacking

Knowledge-level interaction
m objects, features and actions
m not to lower-level symbols.

Agent initiated communication



Semantic Memory

Semantic Memory @
m Declarative memory
General, context-free knowledge
of the world object @ object
m  Organized information : object

object-type

Salient properties of an object e e f @
_ _ prefer-over
What it looks like? monster opjecttype

oin
. bject-t FLO
How it moves? e/ FLo objecttype’ coin
What are its components - question question e
m Can be acquired in different ways structure name @ name Came
Can be built up from experiences tackle-monster Ztructure structure |
P . . grab-coin
Through explicit instruction search-question
disty winged @ e
Proposed Object-Oriented distx oo speed attribute/" T attribute
Representation in Semantic Memory Vo r
distx disty disty distx

m Structures associating FLOs with
objects

m Learn preferences between objects

m Structures associating features to
FLOs



Two step learning

Semantic Learning

m Detect incomplete structures in
semantic memory

m  Convert internal representations

in to a query
= On receiving a reply, parse the
answer \l, Create Query
m  Assimilate . .
Yl Chunking EERSSSIIN I Execution
m |ncremental Knowledge Knowledge
Procedural Learning | Parsing
= On forming new semantic Assimilation Agent

structures, use generic ways to
convert them into procedural
knowledge

m Learn general rules from specific
examples



Learning from Instruction in Infinite Mario

Semantic learning using Soar-SMem

= No natural language support
m  Agent communicates using its internal representations

Procedural Learning
m  Chunking — explanation based learning
Learn new rules at a state by solving a problem in the substate

Reduced learning problem — example
m Match the FLO with correct object
m  Assume the agent knows symbolic preferences for FLOs
m  Assume the agent posses procedural knowledge to apply FLO
m  Once the correct FLO is selected, the agent knows which features are important

for tackle-monster, features — speed, type, winged, distx, distxy



Progression

If object of type monster
isreachable, propose
tackle-monster

If object m1 of type
monster isreachable,
propose tackle-monster

A

tackle-monster

Goal: apply__ state: mariO-soar: m1 isreachable o
correct FLO action: attend- | yes action: apply(FLO(m1))
object(m1) : i
1 7. i
Goal: retrieve state: attend-object(m1) : failure : i
correct structure action: query-smem(m1) | I I
from smem _ . : : :
action: ask-instructor(m1) | ) success I
! action: query-smem(m1) | Retrieved: FLO(m1) |
state: ask-instructor(m1 :
Goal: learn 00”‘3.2‘ action: put-string(m1) 1 reply from instructor: I
FLO from : FLO(m1) :
1

I

Instructor action: store-flo(m L%__________l ______
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Results

Learning algorithm - SARSA
Learning rate — 0.3

Discount rate — 0.9

Exploration policy — Epsilon-greedy
Epsilon — 0.01

Reduction-rate — 0.99

Performance similar to Agent 2
Converges to a policy in 1600 runs

Average reward earned by

converged policy (last 100 runs)
=144.34
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Nuggets and Coal

Proposed a structure for learning from
instruction.

Proposed object-oriented storage in
semantic memory that may aid learning
correct procedural structures

Still in initial phases



