
The projects or efforts depicted were or are sponsored by the U.S. Army Research,
Development, and Engineering Command (RDECOM) Simulation Training and
Technology Center (STTC). The content or information presented does not necessarily
reflect the position or the policy of the Government, and no official endorsement should
be inferred.

A Graphical Memory Architecture!

Paul Rosenbloom ! ! ! 5/20/2010!
University of Southern California!

2!

Memory Architecture!

  Nature of memories used w/in decision cycle!
  Short-term/working and long-term memories!

–  Soar 1-8: working memory + production memory!
–  ACT-R: buffers + production memory, semantic

memory!
–  Soar 9: working memory, ST visual imagery +

production memory, semantic memory, episodic
memory, LT visual memory!

  Focus here is on representation and access!
–  Havenʼt yet got to learning!

3!

Goals!

  Broadly functional memory architecture!
–  Both procedural and declarative knowledge!
–  Hybrid: Continuous/signal + discrete/symbolic!
–  Mixed: Probabilistic/uncertain + discrete/symbolic!

  Uniform implementation!

  Provide core for development of full hybrid
mixed architecture!
–  Melding scope with simplicity and elegance!

4!

Approach!

  Base roughly on Soar 9 and ACT-R!
–  Working memory!
–  Procedural LT Memory!

  Productions!
–  Declarative LT Memory!

  Semantic: Predict unspecified attributes of objects based on
specified ones (cues)!

  Episodic: Retrieve best episode based on recency and
match to cues!

–  Eventually imagery as well, but not yet!
  Implement via graphical models!

–  Layered approach: graph and memory layers!

5!

Graph Layer: Factor Graphs w/ Summary Product!

  Factor graphs are undirected bipartite graphs!
–  Decompose functions: e.g., f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)!
–  Map to variable & factor nodes (with functions in factor nodes)!

  Summary product algorithm does message passing!
–  Compute values of variables (marginals) by sum-product!
–  Compute best overall (max. a posteriori) by max-product!

f1

w

f3 f2

y

x z u

Complete reimplementation
from last year with improved
functionality, generality,
efficiency

6!

Generalized Function/Message Representation!

  N dimensional continuous functions!
–  Approximated as piecewise linear functions over

rectilinear regions!
  Span (continuous) signals, (continuous and

discrete) probability distributions, symbols!
–  Discretize domain for discrete distributions & symbolic!

  [0,1>, [1,2>, [2,3>, …!
–  Booleanize range (and add symbol table) for symbolic!

  E.g., [0,1>=1  RED true; [1,2>=0  GREEN false!

y\x! [0,10>! [10,25>! [25,50>!
[0,5>! 0! .2y! 0!

[5,15>! .5x! 1! .1+.2x+.4y!

7!

Memory Layer: Distinguish WM and LTM!

  Representation is predicate based!
–  E.g., Object(s,O1), Concept(O1,c)!
–  Arguments may be constants, or variables (in LTM)!

  Long-term memories compile into graphs!
–  LTM is composed of conditionals (generalized rules)!
–  Each conditional is a set of predicate patterns and a function!

  WM compiles into functions in peripheral factor nodes!
–  It is just an N dimensional continuous function where normal

symbolic wmes correspond to unit regions with Boolean values!

Object:
WM

Concept:

Join
Pattern

Function

Constant

8!

Conditionals!

  Patterns can be conditions, actions or condacts!
–  Conditions and actions embody normal rule semantics!

  Conditions: Messages flow from WM!
  Actions: Messages flow towards WM!

–  Condacts embody (bidirectional) constraint/probability semantics!
  Messages flow in both directions: local match + global influence!

–  Encoded as (generalized) linear alpha networks!
  Pattern networks joined via bidirectional beta network!
  Functions are defined over condact variables!

Object:
WM

Concept:

Join
Pattern

Function

Constant

CONDITIONAL ConceptPrior!
 Condition: Object(s,O1)!
 Condact: Concept(O1,c)!

Walker! Table! Dog! Human!

.1! .3! .5! .1!

9!

Additional Details!

  Link directionality is set independently for each link!
–  Determines which messages are sent!

  Whether to use sum or max is specified on an
individual variable/node basis!
–  Overall algorithm thus mixes sum-product and max-product!

  Variables can be specified as unique or multiple!
–  Unique variables sum to 1 and use sum for marginals: [.1 .5 .4]!
–  Multiple variables can have any or all elements valued at 1 and

use max for marginals: [1 1 0 0 1]!
  Predicates can be declared as open world or closed

world with respect to matching WM!
  Pattern variables cause sharing of graph structure!

–  May be within a single conditional or across multiple conditionals!

10!

Production Memory!
  Just conditions and actions!

–  Although may also have a function!
  CWA and multiple variables!

Semantic Memory!
  Just condacts (in pure form)!
  OWA and unique variables!
  Naïve Bayes (prior on concept +

conditionals on attributes)!CONDITIONAL Transitive!
 Condition: Next(a,b)!
 Next(b,c)!
 Action: Next(a,c)!

Memories!

CONDITIONAL ConceptWeight!
 Condact: Concept(O1,c)[α1]!
 Weight(O1,w)!

w\c! Walker! Table! …!

[1,10>! .01w! .001w! …!

[10,20>! .2-.01w! “! …!

[20,50>! 0! .025-.
00025w! …!

[50,100>! “! “! …!

CONDITIONAL ConceptPrior!
 Condition: Object(s,O1)!
 Condact: Concept(O1,c)[α1] !

Walker! Table! Dog! Human!

.1! .3! .5! .1!

11!

Episodic Memory!
  Just condacts (in pure form)!
  OWA and unique variables!
  Exponential prior on time +

conditionals on episode attributes!

Constraint Memory!
  Just condacts (in pure form)!
  OWA and multiple variables!

Memories (cont.)!

t\c! Walker! Table! Dog! Human!

1! 1! 0! 0! 0!

2! 0! 0! 0! 1!

3! 0! 0! 0! 1!

4! 0! 0! 1! 0!
0! 1! 2! 3! 4!

0! .032! .087! .237! .644!

CONDITIONAL TimePrior!
 Condact: Time(t)[α3]!

Conditional TimeConcept!
 Condact: Time(t)[α3]!
 Concept(O1,c)!

CONDITIONAL TwoColorConstraint12!
 Condact: Color(R1,c1)[α7]!
 Color(R2,c2)[α8]!

c1\c2! Red! Blue!

Red! 0! 1!

Blue! 1! 0!

12!

Key Similarities and Differences!

Similarities!
  All based on WM and LTM!

  All LTM based on conditionals!

  All conditionals map to graph!

  Processing by summary product!

Differences!
  Procedural vs. declarative!

–  Conditions/actions vs. condacts!
  Directionality of message flow!

–  Closed vs. open world!
–  Multiple vs. unique variables!

  Semantic vs. episodic!
–  Marginal/sum vs. MAP/max!
–  Condition on concept vs. time!
–  General probs. vs. instances!

Constraints are actually hybrid: condacts, OWA, multiple
Other variations and hybrids are also possible

Is analogy vs. generalization
driven by max vs. sum over
instance-based memory?

13!

Summary!
Gold!

  Uniform implementation of four
distinct LTMs!

  Reveals subtle underlying
differences among the LTMs!

  An important step towards a full
hybrid mixed architecture!
–  Working on decisions!
–  Then subgoaling & learning!
–  Proposal on imagery!

  Leverage continuous
functions at core and known
facility of graphical models
for perception!

Coal!
  Subtle incompatibilities imply

less uniformity in details!
–  They have also proven quite

difficult to resolve cleanly!
  Progress can be slow & difficult!

–  With occasional bursts of insight!
  Not full memory implementations!

–  And no learning!
  Still far from full architecture!

–  And from showing that there is a
significant functional gain from
this approach!

