Bryan Smith
May 2010

Representing Ontologies and
Reasoning with SMem

Introduction

Tool (Onto2SMem) to
generate declarative
knowledge base in
SMem from ontology
Sound (if incomplete)
inference

Proof of concept

Baseline
implementation

Onto2SMem

SMem AN

declarative

add

Soar

A/

SMem

I

response

Inference

Semantic memory (SMem)
Store facts about world (declarative)

Graph: nodes, augmentations

Retrieval and storage

Cue- or non-cue —based retrievals
Efficient retrievals with activation bias

Memory or file (SQLite)

Ontology

Formal representation of domain
Classes and instances

E.g., Steve is an instance of Person

Classes have attributes (e.g., name, SSN), restrictions

(e.g., Father must have at least one child)
Relationships expressed as properties

E.g.,, isFatherOf (Person, Person)

isFatherOf (Steve,Matthew), so both Steve and
Matthew are instances of Person

OWL

Web Ontology Language
Based on descriptive logics

Two versions with multiple sublanguages with
associated use cases and computational profiles

Represented in multiple formats, including XML/
RDF

http://www.w3.0org/TR/owl-features/

Ontology example

Simple family example
Must define
Relationships

hasSibling (Person,
Person)

Instances
Joe, Amy

haSSibling

instance relationships
hasSibling (Joe, Amy)

OWL: more than a graph

Direct assertions easy

to query
hasMother (Joe,
Heather)

Some relationships

require inference

1sMotherOf (Heather,
Joe)

hasSibling (Amy,
Matthew)

hasFather (Amy, Steve)

Notes about OWL

OWL uses open-world assumption

With OWL, if not verifiably true or false, uncertain
Verifiably true if directly asserted or implied
Verifiably false if property restrictions imply

OWL does not use the uniqgue name
assumption

OWL does not assume two names mean two
distinct entities

Inferred or directly asserted (sameAs or
differentFrom)

OWL features

OWL 1 and OWL 2 have properties, property chains,
property restrictions, quantifiers

OWL 1 guide: http://www.w3.0org/TR/owl-features/
OWL 2 guide: http://www.w3.0rg/TR/2009/REC-owl2-
primer-20091027/
For our example, interested in:
Inverse properties
Symmetric properties
Transitive properties
Property chains

These must be preserved when representing ontology in
SMem

Onto2SMem

Java utility using Jena framework API
Input: OWL file
Output: SMem declarative add commands
Allows use of existing ontologies in SMem
Preserves properties and arbitrary graph structure
Adds supporting collections useful for inference
Onto2SMem
http://bryanesmith.com/soar/inference/

Jena
http://jena.sourceforge.net/

Inference with SMem

Requirement: sound if incomplete
Domain independent

Works with KB generated by Onto2SMem
Implemented in Soar agent space
Useful subset of OWL features

Inverse properties

Symmetric properties

Transitive properties

Property chains (not implemented)

Inference with SMem: interface

name

Inference with SMem: how it works

4 A 4)
Direct Assertion ot Discovery Phase |
query Ph ase found bounded or o
' ™ Search for new axioms... FEE— > uncertain
. i | p:eted
Check whether query exists
as axiom in KB... Inverse | Symmetric | Transitive
\. W, \. W,
I axioms added to KB J

Forward chaining

lterative discovery of new axioms

Unbounded

Bounded searches could be implemented

Initial demo: family relationships

Using simple family
ontology, inference tool
finds missing
relationships
Subsequent runs using
tool take require fewer
decisions

First run: 497 decisions/10
true queries

Second run: 345 decisions/
10 true queries

Replacing two true queries
with uncertain resulted in
approximately 4K queries

Ontology: http://www.bryanesmith.com/ontologies/family-example.owl

Inference hypothesis

Expecting polynomial or hyper-polynomial
decision growth for inference as number of
axioms increases

Due to transitive property check, which is O(n?)
Might be ontology-dependent

Preliminary testing

What are the number of decisions required
for agent to fulfill tasks?

Using 100 queries what is the impact of changing
the number of families?

Run agent twice
First run: inference + direct assertions

Second run: just direct assertions
Has “compiled” KB from first run

Inference and growth

Number of steps spent

fOI’ inference appears Decision for inference
1800

polynomial with 150

relation to elementsin .

KB 1000

800

Additional data points 6o

verified this trend, but...

discarded due to bug °
exposed in larger KB

200

5 10 15 20 25

Data are averages of three runs per condition.

Thoughts

(At least) polynomial decision growth, but
more testing needed
Verify trend with more data

Determine whether growth trend is ontology-
specific

Recommendations for inference

1. Instead of single general-purpose inference
engine, use cases with restrictions to guide
implementations

Consider OWL sublanguages

Carefully crafted ontologies with certain DL
properties can be much more efficient

Require knowledge of DL and efficient inference
implementation

2. Introduce bounded searches
Optional parameter to limit total inference cycles
Default to unbounded search

Improving inference performance

1. During exploratory phase, terminate early if
find result for query
Laziest approach most efficient
2. Use reinforcement learning for task ordering
in exploratory phase

Reward based on number of new axioms found

Works with KBs with certain trends in the types of
relationships

Assuming order impacts total number of inference
cycles require

Improving inference performance

3. Perform inference offline and use compiled
KB with agent

SMem can store KB to disk

Still requires some estimation to determine
whether feasible

Conclusions

Can represent ontologies in Soar using the
SMem module
Preserve the semantics

Perform inference
General-purpose inference is expensive

Use cases and restrictions to guide inference
module development

Bounded searches and forward chaining provide
value if agent can defer when uncertain

Nuggets versus coal

NUGGETS COAL
Preliminary feasibility Incomplete (subset of
demonstrated features)
Domain and task Unbounded with
independent polynomial (or worse)

Reusable growth for inference tasks

Sound Preliminary testing with
Efficient queries after few data points

inference complete Much more testing needed

Questions?

Onto2SMem, sample ontology, Soar agent
with inference, these slides, and other tools:

http://bryanesmith.com/soar/inference/
Jena (OWL Java API)

http://jena.sourceforge.net/
Protege (ontology editor)

http://protege.stanford.edu/

Thanks!

<i - - L o N e
\ N ~ v . .
—— St {) win s, svanen, —in
- - P
. ‘ ~ \
- - =) —n
~ =ty - —
Ny X, . \
- e | —— - e O - ——
)) "~/
e o ~
A
\ \ A p
. —— -) . o
|) -l

Appendix:

Sample family KB before inference

) N
Ky ty Mo
A -
o BT S s e
e patHara o o - Eroe . FopertyHarr
: L
re) { { e » o v oot " [P avtiee Props or by
=3 3oty s ety ot .
| \ ~ > \
-~ 4 -
s
1 P A [.. -t hea™y haaN e S obect
', .
' L 1$~' "l‘ﬂ
r) S,
o
o > “m | ro (- -
]]
ner ravm S type .
' Wt
~ T
s T Sem Hestee
norse

Note: Class and property descriptions removed. This diagram includes the
instances and supporting data structures used for inference.

Appendix:

Sample family KB after inference

i3 Bremme—

Note: Class and property descriptions removed. This diagram includes the
instances and supporting data structures used for inference.

Appendix:

Inference with inverse properties

Properties can be defined as inverse
isMotherOf (A, B) and hasMother (B, A)

isFatherOf (A, B) and hasFather (B, A)
Functional relationships (e.g., isFatherof)
and inverse functional relations (e.qg.,
hasFather) useful restrictions

Entity matching

Appendix:

OWL and inverse properties

<owl:ObjectProperty
rdf:about="#isMotherOf"> <rdf:type
rdf:resource="&owl;FunctionalProperty"/>
<rdfs:range rdf:resource="#Person"/>
<rdfs:domain rdf:resource="#Person"/>
<owl:inverseOf rdf:resource="#hasMother"/>
</owl:ObjectProperty>

Appendix:

Inference with symmetric property

Property is symmetric if property(A,B) —
property(B,A)

hasSibling (Joe,Amy) — hasSibling
(Amy, Joe)

Appendix:

OWL and symmetric property

<owl:

ObjectProperty rdf:about="#hasSibling">

<rdf:type

rdf:

resource="&owl;SymmetricProperty"/>

<rdf:type

rdf:

<rd
<rd

resource="&owl;TransitiveProperty"/>
fs:domain rdf:resource="#Person"/>
fs:range rdf:resource="#Person"/>

</ow

:ObjectProperty>

Appendix:

Inference with transitive property

Property is transitive if property(A,B),
property(B,C) — property(A,Q)

hasSibling (Joe,Amy), hasSibling
(Amy,Matthew) — hasSibling
(Joe,Matthew)

Appendix:

OWL and transitive property

<owl:ObjectProperty rdf:about="#hasSibling">
<rdf:type
rdf:resource="&owl;SymmetricProperty"/>
<rdf:type
rdf:resource="&owl;TransitiveProperty"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>

</owl:ObjectProperty>

Appendix:

Inference with property chain

property.(e,, e,), propertyz(ez,e3),
...,property,, (e\.., €y) — property(e_ey)
hasFather (a,b), hasSister(b,c) -
hasAunt (a, c)
hasSibling(a,b), hasFather(b,c) -
hasFather (a, c)

Appendix:

OWL and property chain

<owl:ObjectProperty rdf:about="#hasFather">
<rdf:type
rdf:resource="&owl:InverseFunctionalProperty"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>
<owl:propertyChainAxiom rdf:parseType="Collection">

<rdf:Description rdf:about="#hasSibling"/>
<rdf:Description rdf:about="#hasFather"/>
</owl:propertyChainAxiom>
</owl:ObjectProperty>

Appendix:

Difference between OWL 1 and 2

OWL 2 added:

Property chains
Asymmetric, reflexive, and disjoint properties
Qualified cardinality

etc.
More information: http://www.w3.0rg/TR/
2009/WD-owl2-overview-20090327/
#New Features

Appendix:

OWL 1 sublanguages

OWL Full
Unrestricted
Not decidable
OWL DL
Disjointness between classes and instances
Axioms complete, form “tree-like structure”
Others
OWL Lite
Forbidden constructs (e.g., oneOf, unionOf, disjointWith, etc)

Basically support “subclasses and property restrictions”
More information: http://www.w3.org/TR/owl-ref/
#Sublanguage-def

Appendix:

OWL 2 sublanguages (profiles)

OWL 2 EL

Useful for large number of classes and properties
Existential quantification

OWL 2QL

Designed for conjunctive queries with instances
LOGSPACE

Highly restricted
OWL 2 RL

Restrictions that permit polynomial-time growth with
rule-based reasoners (if-then)

More information: http://www.w3.0rg/TR/owl2-
profiles/

Appendix:

Inference profile

Loading state (25)
Direct assertion (9g)
Adding axiom (23)
Plus reload state (23+25=48)
Inverse properties (14+8n)
n = number of inverse properties
Transitive properties (4 + n[8(n-m) + 14m])
n =number of axioms involving transitive properties
m = number of axiom pairs with transitive alignment
Symmetric (2+8n)
n = number of symmetric properties

