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Soar-RL Value Function

e Soar-RL relies on learning the Q value function
— Q Value Function, Q(state, action)

(x=1, y=1), (move-up) --> Q=1
(x=1, y=1), (move-right) --> Q=3
(x=1, y=1), (move-down) --> Q=2

1 _
(x=1, y=1), (move-left) --> Q=2 1
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Soar-RL Value Function

e Soar-RL relies on learning the Q value function
— Q Value Function, Q(state, action)

— Value(state) = max(Q(state, action_i))+r

(x=1, y=1), (move-up) --> Q=1
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(x=1, y=1), (move-left) --> Q=2 y=2
(x=1, y=1), (move-down) --> Q=2




Soar-RL Value Function

e Soar-RL relies on learning the Q value function
— Q Value Function, Q(state, action)

— Value(state) = max(Q(state, action _i))

y=3 1 2 3
(x=1, y=1), (move-up) --> Q=1
(x=1, y=1), (move-right) --> Q=3
(x=1, y=1), (move-left) --> Q=2 y=2 2
(x=1, y=1), (move-down) --> Q=2

(x=2, y=1), (move-up) --> Q=2
(x=2, y=1), (move-down) --> Q=3
(x=2, y=1), (move-left) -> Q=2 x=1
(x=2, y=1), (move-right) --> Q=4




Soar-RL Value Function

e Soar-RL relies on learning the Q value function
— Q Value Function, Q(state, action)
— Value(state) = max(Q(state, action _i))
— What about high dimensional continuous space?

(x=1,vy=1, z=1, ... ...)
(x=1.1, y=1, z=1, ... ...)
(x=1.2,y=1, z=1, ... ...)

— Need Value Function Approximation



Motivations

* Improve Value Function Approximation in
Soar-RL

— High dimension continuous space

* Evaluate with challenging tasks
— Characterize the tasks
— Compare with baselines
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Value Function Approximation

Simple linear model:

Q(x,y,up) =wx+w,y+w,
Q(x,y,down) =w,x +w,y+w,
Q(x,y,left) =w,;x +w,y+w,
Q(x,y,right) = w,x + w,y+w,

Solution:
w,;>0,w,<0
W3< W,

W > W,

-Parametric Form

A
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0,0

Goal




Value Function Approximation
-Parametric Form

100, 100
A

Simple linear model won’t work.

Need nonlinear basis function.

Neural network:

y
Goal
0,0
X Yy >

Global Approximators: updates in parameters during learning
affects the entire state space 9



Value Function Approximation
-Nonparametric methods
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Tile coding
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Value Function Approximation
-Nonparametric methods

100, 100
A _

Coarse coding
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Value Function Approximation
-Nonparametric methods

100, 100
A _

Soar-RL supports arbitrary coarse coding
by using “coarse features” in RL rules

RL rule_1: (x,< x < x,) -> Q=q;
RLrule_2: (y,<y<y,)->Q=q, Y

RL rule_n []

Q(Xg< X <Xy, Yo<Y<Yq) =0;+0,

How to decide the boundaries?

How to encode rules for high dimensional
space?

v
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Motivations

* Improve Value Function Approximation in
Soar-RL

— Manually design coarse features can be
challenging, even infeasible

— Learn coarse features automatically
— Compatible with existing VFA scheme in Soar-RL

* Evaluate with challenging tasks
— Characterize the tasks
— Compare with baselines
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Traditional RL

* Dynamic control problem

— Pole balancing /
— Mountain car _ -

— Robotic arm
— Helicopter
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Object Oriented RL

* Object Oriented MDP (OOMDP) framework
— Diuk et al. 2008

— Representation and learning of action models, not
value function approximation

— Limited object diversity
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Motivations

* Improve Value Function Approximation in Soar-RL
— Manually design coarse features can be challenging
— Learn coarse features by hierarchical clustering
— Compatible with existing VFA scheme in Soar-RL

e Evaluate with challenging tasks (Object oriented
environments)
— State representation consists of objects

— Objects are functionally and perceptually diverse,
represented by feature vectors

— Complex interactions among objects
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Evaluation Environment

Distance: 3
Obstacles: bush at 1, rock at 2

. size health bush-sensitivitv rock-sensitivitv
Prey: 1 > > 4

daCcuracv power

Weapon: G 5

Not alert the prey
Shot on target

Fatally wound the prey
Reward

W
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Environment Model
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Integrate Hierarchical Clustering with

Soar-RL

\_

Procedural Memory \

Working Memory

I Reinforcement Learning

/

High dimension, continuous state space
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Integrate Hierarchical Clustering with

Soar-RL

\_

Procedural Memory

Compact
structures

Working Memory

Hierarchical Clustering

~

Reinforcement Learning

/

;

High dimension, continuous feature vector
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Integrate Category Learning with RL

* COBWEB (D. Fisher 1987)

— Incremental learning
* process one instance a time

— Hierarchical clustering

» Take numeric feature vector as input
* Automatically create category symbols
* Hierarchical structure

Animals

Vertebrates Invertebrates

? ?

fish amphibians reptiles birds mammals



Details of the Algorithm
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Vector K = (k,, k,, k;), represents the activated clusters
from each of the three hierarchies.

A cell Cy, represents the rule matching the clusters K,
and a(C,) is the activation:

1if matches
0if not matches

alCy) = {

Connection weight w(C,) is the Q value associated
with the RL rule. The predicted value:

y= Y wlCa(Cy)
Cx

Update in Soar-RL is calculated in the same way as in
stochastic gradient descent methods

Aw(Cy) = (t — yalCy)

_
ECR-G(CK)

0& Like two-hidden-layer network, except for competitive learning and sparse activity

w in the “hidden layer”.
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Evaluation Environment

Distance: 3
Obstacles: bush at 1, rock at 2

. size health bush-sensitivitv rock-sensitivitv
Prey: 1 > > 4

daCcuracv power

Weapon: G 5

Not alert the prey
Shot on target

Fatally wound the prey
Reward

W
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Prey

Weapon

rock-sensitivity

v

Bush-sensitivity

Prey adapted to specific terrain

Health

Data Used for Evaluation

Health and size are positively correlated
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Data Used for Evaluation
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Evaluation

Target system (Hierarchical clustering + RL)

— Hierarchical Categorization

— Using specific functional features

e prey sensing, prey physical, weapon

Baseline 1

— No categorization

— No generalization, slow learning

Baseline 2

— Flat categorization

— Can be over-general, fail to discriminate more specific cases
Baseline 3

— Assingle hierarchy for prey including all perceptual features

— Hierarchy with lower quality: some perceptual features are irrelevant
to the task (such as color)



Results
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Nuggets & Coal

* Nuggets

— Integrated hierarchical category learning and Soar-RL
for object-oriented environments with complex
features

— Provide means to take advantage of prior knowledge
about functional features

* Coal
— Single point evaluation
— Limited complexity in object diversity

— Only one way flow of information: from categorization
to VFA



