Learning Functional Categories
with Soar-RL

Yongjia Wang
University of Michigan



Motivation

e Study the interaction between category
learning and behavior adaptation

— How category learning influence behavior
adaptation

— How behavior adaptation influence category
learning

 Computational account for a prevailing
cognitive phenomenon — basic level category

— Emergent property of Soar-RL (surprisingly)



Outline

Background

Demonstration task

Simulation Results and Analysis
Nuggets and Coal



Category Learning Tasks

e Supervised category learning (classification)
— Example: naive Bayes classifier, SVM, logistic regression
— Con: require predefined category labels

— Pro: category labels are designed to be consistent with
making action decisions

* Unsupervised category learning (clustering)

— Example: k-means clustering, hierarchical clustering,
Gaussian mixture model (soft clustering)

— Pro: automatically generate labels
— Con: category labels may be irrelevant to decision making



Functional Category Learning

* Combine unsupervised and supervised
learning
— Automatically generate category labels

— Find categories that are functional (contribute to
decision making)



Demonstration Task (hunting)
avoid: 0 Pre
{ . Success: +1 Four-I,_eg 1 LI\3/ird_"

Mahua”y —Longbow
designed table TBOW

~Crossbow

[Projectile-SIingshot
Tool Blowgun

L — Spear
Pole Arm
—— Trident

Unsupervised hierarchical categorization based on innate perceptual features

I”

Useful to generalize: learn “region-by-region” rather than “cell-by-cel
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Reinforcement
Learning

Perceptual Input buffer

Learning

Prey features Weapon features




Input
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Basic Level Categories

* Examples w
- Furniture,
— Vehicle(car, sedan > =Bb.0

e Definition (Rosch 1978)

— Maximally informative categories

— Maximize number of attributes shared within the
category, and minimize number of attributes shared
with other categories

— Generally appear in the middle of an abstraction
hierarchy




Basic Level Categories

e |[ssues with theoretical definition of basic level
categories

— Context free, at least implicit
— Lacks of grounding to learning experience

* Our hypothesis about basic level categories

— Related to functionality of the objects and personal
experience

— How do they help the cognitive agent?
e Speeds RL
— How are they learned?

* Emerging phenomenon of the learning process
* Basic level categories have highest overall activations



Extract Basic Level Categories from
Activation Patterns
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Basic Level Categories
Highest Domination Rates across all Inputs
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What will happen after more training?
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More Practice Pulls Down the Basic
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Higher Consistency

Frequency Consistency Tradeoff
(Qualitative)

circle size represents activation of the concepts

Othet leaf level Otheér leaf level

Fish, Small

—
Higher Frequency
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Frequency bias is compensated by training experiences (saturation effect)
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Dynamics of Domination Rates
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Nuggets & Coal

* Nuggets

— Analyzed the interaction between category learning
and behavior adaptation

— Provides detailed computational account for Basic
Level Category

* Dynamics of category activations
e Consistent with theory of basic level category

— Simultaneously learn two types of objects (prey, tool)
* Coal

— Simple data set
— Only one functional context (hunting)



