Episodic & Semantic Soar's Long-Term Declarative Memory Systems

Nate Derbinsky

University of Michigan

Why Declarative Long-Term Memory Systems?

Guiding Principle. Explore and evaluate new architectural mechanisms *if*...

- agents are missing important functionality and
- existing mechanisms cannot <u>effectively</u> and <u>efficiently</u> support this functionality

Soar 9

Autobiographic Agent History

What

The ability to remember, in context, experience that wasn't necessarily known to be important

Why

- Virtual Sensing [Nuxoll & Laird 2007]
- Action Modeling [Xu & Laird 2010]

• • •

Arguments for a distinct mechanism

- Rule matching scales with working memory size
- Rule-based episodes would be problematic to encode and retrieve

Episodic Memory: Big Picture

Episodic memory is a weak learning mechanism

- Automatically captures, stores, and temporally indexes agent state
- Supports content-addressable agent interface to autobiographical prior experience

Mechanism Detail

Encoding

Faithful "snapshot" of top-state

Storage

No dynamics (such as forgetting)

<u>Retrieval</u>

Nearest-neighbor using structural cue matching

- Biased by recency
- Partial match

Select Prior Work

Architectural Integration & Agent Capabilities

Extending Cognitive Architecture with Episodic Memory Andrew Nuxoll & John Laird. AAAI (2007)

Efficiency

Efficiently Implementing Episodic Memory Nate Derbinsky & John Laird. ICCBR (2009)

Integrating Learning Mechanisms

Learning to Use Episodic Memory
Nicholas Gorski & John Laird. Cognitive Systems Research (2011)

Using Diverse Cognitive Mechanisms for Action Modeling John Laird, Joseph Xu, & Sam Wintermute. ICCM (2010)

Soar 9

Declarative Knowledge Store

What

The ability to store and flexibly retrieve large amounts of knowledge about the world, independent of the context in which it was originally learned

Why

- Large, diverse KBs
 - Lexical (WordNet)
 - Ontological (Cyc)

...

Arguments for a distinct mechanism

- Data chunking: exponential rules, difficult to encode/change
- Working memory: rule matching grows with number of objects

Semantic Memory: Big Picture

Supports deliberate storage and retrieval of long-term objects, features, and relations

Architectural Integration *Storage*

Architectural Integration *Storage*

Architectural Integration *Storage*

Architectural Integration Non-Cue-Based Retrieval

Architectural Integration Non-Cue-Based Retrieval

Architectural Integration Cue-Based Retrieval

Architectural Integration Cue-Based Retrieval

Mechanism Detail

Encoding

- Deliberate (via rules)
- Representation: (<long-term identifier> ^attribute value)

Storage

Agent-modifiable over time

Retrieval

- Associative cue: given feature subset, retrieve node (parameterized biases)
- Expansion: given node, retrieve augmentations

Memory Comparison

	Episodic	Semantic
Encoding	Automatic Top-State	Deliberate Object+Features/Relations
Storage	No dynamics	Agent modifiable
Retrieval	Disjunctive Structural	Conjunctive Features/Relations

Select Prior Work

Efficiency

Towards Efficiently Supporting Large Symbolic Declarative Memories Nate Derbinsky, John Laird, & Bryan Smith. ICCM (2010)

Integrating Learning Mechanisms

Using Diverse Cognitive Mechanisms for Action Modeling John Laird, Joseph Xu, & Sam Wintermute. ICCM (2010)

Today's Talks

EpMem	SMem	Talk
	x	Effective and Efficient Historical Memory Retrieval Bias in Soar's Semantic Memory Nate Derbinsky
	x	Playing with Semantic Memory Bob Marinier
x	x	Performance Evaluation of Soar's Declarative Memories John Laird
x		Do's and Don't's of Episodic Memory Justin Li
x	x	Supporting Delayed Intentions with Long-Term Memories Justin Li

DISCUSSION

Open Research Issues

Architecture

- Functionality
 - Encoding
 - Storage
 - Retrieval
- Efficiency
- Integration

Agent/Task

- Knowledge
 - Representation
 - Consistency
 - Sharing
 - Capabilities
- Evaluation
 - Tasks
 - Metrics
- Tools

Encoding: Episodic

- Should EpMem capture sub-goal processing?
 - Space and retrieval time multiplier

- Explore space saver tradeoff: stop at LTIs
 - Sacrifice of fidelity ("changing" episodes)
 - Added deliberation required to "reconstruct" episode contents
 - Can't search substructure

Example Semantic Knowledge: "soar"

Example Episode

Pruned Episodic Encoding

Episodic

Semantic

Encoding: Semantic

- Where does knowledge come from?
 - Consolidating from EpMem via stability

Structural Stability (1)

Structural Stability (2)

Structural Stability (3)

Structural Stability (4)

Encoding: Semantic

- Where does knowledge come from?
 - Consolidating from EpMem via stability
 - From WM via situational focus (activation)
 - Mirroring
 - Hypotheticals?

Storage: Episodic

- Memory is cheap, but not unlimited...
 - Forgetting
 - Recency, emotional salience
 - Merging
 - Can such operations occur in an incremental fashion?
 - Is there a functional benefit to forgetting?

Storage: Semantic

- Memory is cheap, but not unlimited...
 - Forgetting via activation (ala ACT-R)
 - Is there a functional benefit to forgetting?

Retrieval: Episodic

- Evaluating retrieval quality
- Biases for ambiguous cues
 - Episode emotional appraisal
 - Element activation
 - How to do this efficiently!!??
- More complex similarity functions
 - Possibly exploit static structure of IO

Retrieval: Semantic

- Effective & efficient biases (ala ACT-R)
 - Base-level
 - Spreading (more than 1-level?)
 - Partial match
 - Noise
 - Other?

Efficiency

- Asynchronous retrievals
 - Pragmatic: max time per cycle
 - Explore multiple approaches to a problem, while
 LTMs are searching
 - Faster memory -> better task performance?

Integration

- Learning to control LTMs
- Knowledge-level learning/retrieval strategies
- Symbolic vs. Perceptual LTMs
 - How can symbolic LTM inform perceptual processes?

Knowledge

- What types of representations do we need to support and learn large, diverse semantic stores?
- How do we maintain consistency between the long-term memories (or at least remain robust to inconsistencies)?
- To what extent can long-term knowledge be shared between agents?
- How do we capture high-level capabilities as reusable components (i.e. rule libraries)?

Evaluation

- What is a "comprehensive" set of domains/ tasks by which to measure progress of LTM development?
 - Metrics?

- At what time scale should we evaluate LTMs for generally intelligent agents?
 - Is this feasible in real-time domains?

Tools

As agents persist for long periods of time and build up their own knowledge stores, how do we assess/visualize progress and debug agents?