Effective and Efficient Historical Memory Retrieval Bias in Soar's Semantic Memory

Nate Derbinsky

University of Michigan

Semantic Memory in Soar

Motivation

- Some knowledge can be useful independent of the context in which it was initially learned
- WM + rules do not scale well to large fact stores

Initial Focus (Derbinsky, Laird, Smith 2010)

- Basic functionality
 - Deliberate agent storage
 - Cue-based retrieval from feature subset
- Scaling to large knowledge bases (e.g. WordNet)

Long-term Goal

Effective and efficient across a variety of tasks

Problem: Ambiguous Cues

Supporting Ambiguous Cues

Given...

- large store of knowledge;
- and a cue that pertains to multiple previously encoded memories...

support retrievals that are effective and efficient across a variety of tasks.

Prior Work: Historical Memory Bias

Rational analysis posited that human memory optimizes over history of past memory access

Anderson & Schooler, 1991

Implementations of base-level activation do not scale to large stores

Douglass, Ball, & Rodgers, 2009

This Work

(Derbinsky & Laird 2011)

Task analysis. Word sense disambiguation and 3 commonly used data sets

Effectiveness. Demonstrate the functional benefit of biasing retrievals towards past memory access

Efficiency. High-fidelity, high-performance approximation to support historically biased retrievals in large stores

Word Sense Disambiguation (WSD)

Task. Computationally identify the meaning of words in context.

Our focus is <u>not</u> language processing, therefore we appropriate a simplified, highly structured problem formulation.

Our WSD Formulation

Input

- Sequence of sentences (sequence of words)
- Each word specified as lexical string and part-ofspeech (noun, verb, adjective, adverb)

<u>Given</u>

- Machine Readable Dictionary (MRD): for each word...
 - Set of available senses: for each sense...
 - Definition
 - Tag frequency

WSD Example

Input

Sentence

He will be succeeded by Ivan Allen *Jr., who became a candidate in the* Sept. 13 primary after Mayor Hartsfield announced that he would not **run** for reelection.

Word

"run" (v)

MRD

- (0) "become undone; 'the sweater unraveled' a)
- (0) "come unraveled or undone as if by snagging; b) 'Her nylons were running'"
- (0) "reduce or cause to be reduced from a solid to a liquid state, usually by heating; 'melt butter'; 'melt down gold'; The wax melted in the sun'"
- (3) "cause to perform; 'run a subject'; 'run a d) process'"
- h) (7) "run, stand, or compete for an office or a position; 'Who's running for treasurer this vear?"
- r) (106) "move fast by using one's feet, with one foot off the ground at any given time; 'Don't run you'll be out of breath'; 'The children ran to the shore'"

(41 total options)

Evaluation Data Sets

	SemCor*	Senseval-2**	Senseval-3**
Inputs	>185,000	2,260	1,937
Random Performance	38.73%	40.56%	32.98%

MRD. WordNet v3 >212,000 word senses

*Miller et al., 1993
**Kilgarriff & Rosenzweig, 2000

Evaluation Methodology

Task

...

7. "announce" (v)

8. "not" (r)

9. "run" (v)

10. "reelection" (n)

. . .

Evaluating Effectiveness

Non-Adaptive Algorithms

- Lesk*
- Simplified Lesk**
- Static Frequency

Memory-based Approach

- Recency
- Frequency
- Base-level Activation

^{*}Lesk, 1986

^{**}Kilgarriff & Rosenzweig, 2000

Task Performance

(1 corpus exposure)

Task Performance

(2 corpus exposures)

Task Performance

(10 corpus exposures)

Effectiveness Summary

- 3 historical memory biases, 3 WSD data sets...
 - Improvements over non-adaptive algorithms after little corpus exposure
 - Method not dependent upon MRD definition quality (ala Lesk) or representative frequency distribution (ala Static Frequency)

Evaluating Scalability

The **recency** and **dynamic frequency** biases are locally efficient*

- Constant time computation
- Local activation effects

Maximum Query Time (msec)

	SemCor	Senseval-2	Senseval-3
Recency	0.85	0.82	0.80
Dynamic Frequency	0.87	0.82	0.78

^{*}Derbinsky, Laird, & Smith, 2010

Base-level Activation

Motivation

- High WSD performance
- Commonly used in cognitive modeling community

Challenge

Exponential decay of all memories at each time step

Approach

- Novel locally efficient approximation
 - Observation: present over-estimates future
 - Only update on access (+ c older)
- Bounded memory window*

^{*}Petrov, 2006

Approximation Evaluation

	SemCor	Senseval-2	Senseval-3
Maximum Query Time	1.34 msec	1.00 msec	0.67 msec
Task Performance Difference	0.82%	-0.56%	-0.72%
Minimum Model Fidelity*	90.30%	95.70%	95.09%

^{*}The smallest portion of senses that the model selected within a run that matched the results of the base-level activation model

Efficiency Summary

Recency and Dynamic Frequency

2 orders of magnitude faster than RT (50msec)

Base-level Activation Approximation

- 1 order of magnitude faster than RT (50msec)
- Comparable task performance, high fidelity

Evaluation

Nuggets

- Evaluated effectiveness and efficiency of 3 historical memory retrieval biases on 3 WSD data sets
- Implemented in Soar 9.3.1

Coal

- Only 1 task (WSD)
- Only 1 type of bias (historical)
- Only 1 mechanism applied to task (LTM)