Do's and Don't's of Episodic Memory

Justin Li

Computer Science and Engineering University of Michigan justinnh@umich.edu

2011-06-15

Goal of this Talk

- 1. Give high-level overview of algorithms behind Epmem
- 2. Suggest techniques for making faster Epmem queries
- 3. Present ideas for making Epmem more efficient

The Purpose and Interface of Episodic Memory

Purpose

- Record an agent's experience
- Capture knowledge not important a priori

The Purpose and Interface of Episodic Memory

Purpose

- Record an agent's experience
- Capture knowledge not important a priori

Interface

- Storage: Automatic
- Retrieval:
 - Of a particular episode
 - Of episodes similar to a cue
 - ▶ query
 - ▶ neg-query
 - ▶ before
 - ▶ after
 - prohibit
 - Of previous/next episodes
- Refer to Soar 9.3.1 manual for details.

► Taken from [Derbinsky and Laird, 2009]

Episode

Cue

Disjunctive Normal Form (DNF) Graph

Working Memory Graph

Complexity of Episodic Memory Search

- Graph match is NP-Complete
- Reduction from the induced subgraph isomorphism problem
 - Root has edges to all nodes
 - All edges have the same label
 - All edges have back-edges
- Worse-case complexity:

$$O(\|cue\| * \|avg.IDs\| + \|memory\| * k^{\|cue\| + \|episode\|})$$

Complexity of Episodic Memory Search

- Focus on improving best and average case complexity
 - Delaying work until it's necessary
 - 2. Reducing the number of intervals to iterate through
 - 3. Avoiding graph match if possible

- Solutions:
 - Agent Augment episode with constant WME if important *a priori*
 - Architecture Incrementally grow the DNF graph, only including WMEs when necessary
- ▶ Complexity Reduction:

$$O(\|cue\| * \|memory\|) \Rightarrow O(\|cue\|)$$

Solutions:

Agent If two WMEs always appear together, use the more selective one to query episodic memory

Complexity Reduction:

$$O(\|cue\| * \|memory\|) \Rightarrow O(\|cue\|)$$

#3: Avoid multi-valued attributes

#3: Avoid multi-valued attributes

#3: Avoid multi-valued attributes

Solutions:

Agent Keep the number of multi-valued cues small
Agent Use elaborations to make WMEs specific
Architecture Create stricter filters for performing graph
match

Complexity Reduction:

$$O(\|memory\| * k^{\|cue\| + \|episode\|}) \Rightarrow O(\|memory\|)$$

Solutions:

Architecture Use database information to determine existence of WMEs

▶ Complexity Reduction:

$$O(\|memory\|) \Rightarrow O(1)$$

Solutions:

Architecture Reduce work done for orphans Architecture Jump ahead to parent's existence

► Complexity Reduction:

$$O(\|cue\| * \|memory\|) \Rightarrow O(1)$$

Evaluation

Coal

- Worst case search will always be exponential (unless P = NP)
- Current implementation requires time linear in episodes even for best case

Nuggets

- It's possible to restrict the exponential worst case with better cues
- On-going architectural work to improve efficiency of episodic memory

Thank You

Further Reading

- Derbinsky, N. and Laird, J. E. (2009). Efficiently Implementing Episodic Memory. In Proceedings of the 8th International Conference on Case-Based Reasoning (ICCBR).
- Nuxoll, A. M. and Laird, J. E. (2007). Extending Cognitive Architecture with Episodic Memory. In Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI).